首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Amarasekare P 《Ecology》2007,88(11):2720-2728
Intraguild predation/parasitism (IGP: competing species preying on or parasitizing each other) is widespread in nature, but the mechanisms by which intraguild prey and predators coexist remain elusive. Theory predicts that a trade-off between resource competition and IGP should allow local niche partitioning, but such trade-offs are expressed only at intermediate resource productivity and cannot explain observations of stable coexistence at high productivity. Coexistence must therefore involve additional mechanisms beside the trade-off, but very little is known about the operation of such mechanisms in nature. Here I present the first experimental test of multiple coexistence mechanisms in a natural community exhibiting IGP. The results suggest that, when resource productivity constrains the competition-IGP trade-off, a temporal refuge for the intraguild prey can not only promote coexistence, but also change species abundances to a pattern qualitatively different from that expected based on the trade-off or a refuge alone. This is the first empirical study to demonstrate a mechanism for why communities with IGP do not lose species diversity in highly productive environments. These results have implications for diversity maintenance in multi-trophic communities, and the use of multiple natural enemies in biological control.  相似文献   

2.
Hillebrand H  Bennett DM  Cadotte MW 《Ecology》2008,89(6):1510-1520
The composition of communities is strongly altered by anthropogenic manipulations of biogeochemical cycles, abiotic conditions, and trophic structure in all major ecosystems. Whereas the effects of species loss on ecosystem processes have received broad attention, the consequences of altered species dominance for emergent properties of communities and ecosystems are poorly investigated. Here we propose a framework guiding our understanding of how dominance affects species interactions within communities, processes within ecosystems, and dynamics on regional scales. Dominance (or the complementary term, evenness) reflects the distribution of traits in a community, which in turn affects the strength and sign of both intraspecifc and interspecific interactions. Consequently, dominance also mediates the effect of such interactions on species coexistence. We review the evidence for the fact that dominance directly affects ecosystem functions such as process rates via species identity (the dominant trait) and evenness (the frequency distribution of traits), and indirectly alters the relationship between process rates and species richness. Dominance also influences the temporal and spatial variability of aggregate community properties and compositional stability (invasibility). Finally, we propose that dominance affects regional species coexistence by altering metacommunity dynamics. Local dominance leads to high beta diversity, and rare species can persist because of source-sink dynamics, but anthropogenically induced environmental changes result in regional dominance and low beta diversity, reducing regional coexistence. Given the rapid anthropogenic alterations of dominance in many ecosystems and the strong implications of these changes, dominance should be considered explicitly in the analysis of consequences of altered biodiversity.  相似文献   

3.
Vellend M 《Ecology》2006,87(2):304-311
Several lines of evidence suggest that the species diversity and composition of communities should depend on genetic diversity within component species, but there has been very little effort to directly assess this possibility. Here I use models of competition among genotypes and species to demonstrate a strong positive effect of the number of genotypes per species on species diversity across a range of conditions. Genetic diversity allows species to respond to selection imposed by competition, resulting in both functional convergence and divergence among species depending on their initial niche positions. This ability to respond to selection promotes species coexistence and contributes to a reduction in variation in species composition among communities. These models suggest that whenever individual fitness depends on the degree of functional similarity between a focal individual and its competitors, genetic diversity should promote species coexistence; this prediction is consistent with the few relevant empirical data collected to date. The results point to the importance of considering the genetic origin and diversity of material used in ecological experiments and in restoration efforts, in addition to highlighting potentially important community consequences of the loss of genetic diversity in natural populations.  相似文献   

4.
Carroll IT  Cardinale BJ  Nisbet RM 《Ecology》2011,92(5):1157-1165
The frequently observed positive correlation between species diversity and community biomass is thought to depend on both the degree of resource partitioning and on competitive dominance between consumers, two properties that are also central to theories of species coexistence. To make an explicit link between theory on the causes and consequences of biodiversity, we define in a precise way two kinds of differences among species: niche differences, which promote coexistence, and relative fitness differences, which promote competitive exclusion. In a classic model of exploitative competition, promoting coexistence by increasing niche differences typically, although not universally, increases the "relative yield total", a measure of diversity's effect on the biomass of competitors. In addition, however, we show that promoting coexistence by decreasing relative fitness differences also increases the relative yield total. Thus, two fundamentally different mechanisms of species coexistence both strengthen the influence of diversity on biomass yield. The model and our analysis also yield insight on the interpretation of experimental diversity manipulations. Specifically, the frequently reported "complementarity effect" appears to give a largely skewed estimate of resource partitioning. Likewise, the "selection effect" does not seem to isolate biomass changes attributable to species composition rather than species richness, as is commonly presumed. We conclude that past inferences about the cause of observed diversity-function relationships may be unreliable, and that new empirical estimates of niche and relative fitness differences are necessary to uncover the ecological mechanisms responsible for diversity-function relationships.  相似文献   

5.
Price JN  Hiiesalu I  Gerhold P  Pärtel M 《Ecology》2012,93(6):1290-1296
The existence of deterministic assembly rules for plant communities remains an important and unresolved topic in ecology. Most studies examining community assembly have sampled aboveground species diversity and composition. However, plants also coexist belowground, and many coexistence theories invoke belowground competition as an explanation for aboveground patterns. We used next-generation sequencing that enables the identification of roots and rhizomes from mixed-species samples to measure coexisting species at small scales in temperate grasslands. We used comparable data from above (conventional methods) and below (molecular techniques) the soil surface (0.1 x 0.1 x 0.1 m volume). To detect evidence for nonrandom patterns in the direction of biotic or abiotic assembly processes, we used three assembly rules tests (richness variance, guild proportionality, and species co-occurrence indices) as well as pairwise association tests. We found support for biotic assembly rules aboveground, with lower variance in species richness than expected and more negative species associations. Belowground plant communities were structured more by abiotic processes, with greater variability in richness and guild proportionality than expected. Belowground assembly is largely driven by abiotic processes, with little evidence for competition-driven assembly, and this has implications for plant coexistence theories that are based on competition for soil resources.  相似文献   

6.
Yenni G  Adler PB  Ernest SK 《Ecology》2012,93(3):456-461
Theory has recognized a combination of niche and neutral processes each contributing, with varying importance, to species coexistence. However, long-term persistence of rare species has been difficult to produce in trait-based models of coexistence that incorporate stochastic dynamics, raising questions about how rare species persist despite such variability. Following recent evidence that rare species may experience significantly different population dynamics than dominant species, we use a plant community model to simulate the effect of disproportionately strong negative frequency dependence on the long-term persistence of the rare species in a simulated community. This strong self-limitation produces long persistence times for the rare competitors, which otherwise succumb quickly to stochastic extinction. The results suggest that the mechanism causing species to be rare in this case is the same mechanism allowing those species to persist.  相似文献   

7.
Vasseur DA  Gaedke U 《Ecology》2007,88(8):2058-2071
Community biomass is often less variable than the biomasses of populations within the community, yet attempts to implicate compensatory dynamics between populations as a cause of this relationship often fail. In part, this may be due to the lack of appropriate metrics for variability, but there is also great potential for large-scale processes such as seasonality or longer-term environmental change to obscure important dynamics at other temporal scales. In this study, we apply a scale-resolving method to long-term plankton data, to identify the specific temporal scales at which community-level variability is influenced by synchrony or compensatory dynamics at the population level. We show that variability at both the population and community level is influenced strongly by a few distinct temporal scales: in phytoplankton, ciliate, rotifer, and crustacean communities, synchronous dynamics are predominant at most temporal scales. However, in phytoplankton and crustacean communities, compensatory dynamics occur at a sub-annual scale (and at the annual scale in crustaceans) leading to substantial reductions in community-level variability. Aggregate measures of population and community variability do not detect compensatory dynamics in these communities; thus, resolving their scale dependence unmasks dynamics that are important for community stability in this system. The methods and results presented herein will ultimately lead to a better understanding of how stability is achieved in communities.  相似文献   

8.
Limiting similarity theory predicts that competing species must segregate along one or more dimensions of their ecological niche in order to coexist. In predator communities, interspecific interactions are influenced by a diversity of factors; therefore, the behavioural patterns of composing species will differ due to locally adapted interactions. We deployed 32–41 camera-traps in five study areas across the Iberian Peninsula to investigate the temporal relations between mesocarnivores in SW Europe. The selection for a period of the diel cycle and plasticity in activity patterns was evaluated using the Jacobs Selection Index (JSI) and the coefficient of activity overlap (?1). Furthermore, we investigated whether temporal shifts can facilitate coexistence by reducing activity overlap. Seven species of mesocarnivores were detected and were assigned into one of three behaviourally distinct groups: diurnal (JSIday?≥?0.8), strictly nocturnal (JSInight?≥?0.8) or facultative nocturnal species (0.4?≥?JSInight?>?0.8). Most species exhibited substantial flexibility, which allowed them to locally adapt their foraging strategies (intraspecific ?1?=?0.70–0.77). Mean Δ1 from all interspecific pairwise comparisons was negatively correlated with the number of carnivore species with ≥10 detections (r ?0.76, p?=?0.02). Our results suggest that temporal segregation is likely to play an important role in facilitating mesocarnivore coexistence, especially with increasing community complexity, where most species’ activity peaks were asynchronous. These results contribute to understanding the dynamics and behavioural strategies of coexisting mesocarnivores, crucial for forecasting the possible outcomes of conservation or management actions.  相似文献   

9.
Howeth JG  Leibold MA 《Ecology》2010,91(9):2727-2741
Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.  相似文献   

10.
Both intraspecific spatial aggregation and temporal priority effects have the potential to increase long-term species coexistence. Theory and models suggest that intraspecific aggregation can facilitate coexistence via limited dispersal or asymmetric interaction distances. During community assembly, intraspecific aggregation may also delay interactions between more and less competitive species, thus creating opportunities for priority effects to facilitate longer-term coexistence. Few empirical studies have tested predictions about aggregation and coexistence, especially in the context of community assembly or ecological restoration. We investigated (1) impacts of intraspecific aggregation on the assembly of eight-species communities over three years, (2) the scale dependence of these impacts, and (3) implications for California prairie restoration. We planted eight native species in each of 19, 5 m wide, octagonal plots. Species were either interspersed throughout the plot or aggregated into eight, 2.2-m(2), wedge-shaped, monospecific sectors. Over three years, species diversity declined more quickly in interspersed plots than in aggregated plots. Two species had higher cover or increased more in interspersed than aggregated plots and were identified as "aggressives." Four species had higher cover or increased more in aggregated than interspersed plots and were identified as "subordinates." Within aggregated plots, aggressive species expanded beyond the sector in which they were originally seeded. Cover of aggressive species increased faster and reached higher values in sectors that were adjacent to the originally planted sector, compared to nonadjacent sectors. Cover of aggressive species also increased more and faster near plot centers, compared to plot edges. Areas near plot centers were representative of smaller aggregation patches since species were planted closer to heterospecific neighbors. Two subordinate species maintained higher cover near plot edges than near plot centers. Moreover, two subordinate species maintained higher cover when seeded in sectors farther away from aggressive species. These results suggest that initial intraspecific aggregation can facilitate species coexistence for at least three years, and larger aggregation patches may be more effective than smaller ones in the face of dispersing dominants. The creation of temporal priority effects may represent an underappreciated pathway by which intraspecific aggregation can increase coexistence. Restorationists may be able to maintain more diverse communities by planting in a mosaic of monospecific patches.  相似文献   

11.
Are trade-offs in plant resprouting manifested in community seed banks?   总被引:2,自引:0,他引:2  
Clarke PJ  Dorji K 《Ecology》2008,89(7):1850-1858
Trade-offs in allocation to resprouting vs. seedling regeneration in plants are predicted to occur along fire disturbance gradients. Increased resprouting ability should be generally favored in plant communities with a high probability of crown fire return. Hence, communities dominated by resprouters are predicted to have smaller seed banks than those dominated by species killed by fire. We tested whether there were trait shifts in resprouting ability among growth forms (short-lived herbaceous vs. ground-dwelling perennials vs. shrubs) and among communities (rocky outcrop vs. sclerophyll forest) with contrasting probabilities of crown fire return. Resprouting was more common in ground-dwelling perennials and in the sclerophyll forest community with a high probability of crown fire. Soil seed banks were sampled in rocky outcrop and sclerophyll forest communities in recently burned (18 months) and long-since-burned (12 years) locations at interspersed replicated sites. Collected seed banks were treated with orthogonal treatments of fire stimuli or no stimuli, and seedling emergence was measured in controlled conditions. Seed bank composition reflected the pattern of extant vegetation, with resprouting species being more common in the community with a higher probability of crown fire. Overall, however, resprouting species were poorly represented in the seed bank compared to those species killed by fire. Predicted shifts in allocation to seed production were strongly manifested in community seed banks across the disturbance gradient. Fewer species, seedlings, and seedlings per adult emerged from seed banks in the sclerophyll forest. This suggests that the dominance of resprouting species influences recruitment at the community scale. Community patterns in the seed bank also reflected predicted trade-offs with plant size and growth rate. Short-lived species that are killed by fire dominated the seed bank on rocky outcrops, while longer-lived resprouting species were found in low abundance. Life history trade-offs in persistence and regeneration strongly contribute to coexistence patterns between and within communities with contrasting probabilities of fire return.  相似文献   

12.
Levels of genetic polymorphism were surveyed at two enzyme loci (LAP, PGI) in 2 intertidal and 6 subtidal species of the bivalve genus Macoma living in the waters of the San Juan Islands (Washington and Canada). The temporal environmental variability-genetic variability hypothesis predicts that intettidal species should have greater levels of genetic polymorphism than subtidal species. This is not true for the genus Macoma. However, at the PGI locus, genetic polymorphism was proportional to niche breadth in both the intertidal and subtidal species, but only for intertidal species at the LAP locus. These results support the contention that temporal environmental variability is not necessarily important in maintaining genetic variability, but that environmental heterogeneity may select for increased polymorphism at some loci.  相似文献   

13.
Herbivory limits recruitment in an old-field seed addition experiment   总被引:2,自引:0,他引:2  
MacDougall AS  Wilson SD 《Ecology》2007,88(5):1105-1111
Environmental variability can promote coexistence by creating establishment sites for rare plants, but low diversity in anthropogenic grasslands suggests that this variability may be eliminated (homogenization hypothesis) or inaccessible (barrier hypothesis). We explore these alternatives on the northern Great Plains, where 11 million hectares have been transformed by multiple environmental changes, but the causes of species loss are unclear. In a degraded grassland, we increased environmental variability by manipulating competition and herbivory along gradients of fertility and disturbance, and we circumvented dispersal barriers by adding 1.2 million seeds of five functionally distinct species at varying densities. The experiment ended after 12 weeks due to the direct and indirect effects of unapparent small native herbivores, which were barriers to population establishment by the added species. The direct cause of recruitment failure was browsing. The indirect cause was associated with competition from invasive plants that appeared to be more tolerant or resistant to herbivory. Variability in fertility, disturbance, propagule pressure, and competition had relatively minor impacts on colonization by the added species because herbivores controlled recruitment in most environments. Recruitment outside the herbivore exclosures was mostly by unpalatable exotics, suggesting a possible link between invasion success and herbivore resistance for some introduced plants.  相似文献   

14.
Spatially organized distribution patterns of species and communities are shaped by both autogenic processes (neutral mechanism theory) and exogenous processes (niche theory). In the latter, environmental variables that are themselves spatially organized induce spatial structure in the response variables. The relative importance of these processes has not yet been investigated in urban habitats. We compared the variance explained by purely spatial, spatially structured environmental, and purely environmental components for the community composition of spiders (Araneae), bees (Apidae), and birds (Aves) at 96 locations in three Swiss cities. Environmental variables (topography, climate, land cover, urban green management) were measured on four different radii around sampling points (< 10 m, 50 m, 250 m, 1000 m), while Moran's eigenvector maps (MEMs) acted as spatial variables. All three taxonomic groups showed weak spatial structure. Spider communities reacted to very fine-scaled environmental changes of lawn and meadow management and climate. Bird community composition was determined by woody plants as well as solar radiation at all radii, the scale of the influence varying among species. Bee communities were weakly explained by isolated variables only. Our results suggest that the anthropogenic structuring of urban areas has disrupted the spatial organization of environmental variables and inhibited the development of biotic spatial processes. The near absence of spatial structure may therefore be a feature typical of urban species assemblages, resulting in urban community composition mainly influenced by local environmental variables. Urban environments represent a close-knit mosaic of habitats that are regularly disturbed. Species communities in urban areas are far from equilibrium. Our analysis also suggests that urban communities need to be considered as being in constant change to adapt to disturbances and changes imposed by human activities.  相似文献   

15.
Kahmen A  Renker C  Unsicker SB  Buchmann N 《Ecology》2006,87(5):1244-1255
The relationship between plant diversity and productivity has largely been attributed to niche complementarity, assuming that plant species are complementary in their resource use. In this context, we conducted an 15N field study in three different grasslands, testing complementarity nitrogen (N) uptake patterns in terms of space, time, and chemical form as well as N strategies such as soil N use, symbiotic N fixation, or internal N recycling for different plant species. The relative contribution of different spatial, temporal, and chemical soil N pools to total soil N uptake of plants varied significantly among the investigated plant species, within and across functional groups. This suggests that plants occupy distinct niches with respect to their relative N uptake. However, when the absolute N uptake from the different soil N pools was analyzed, no spatial, temporal, or chemical variability was detected, but plants, and in particular functional groups, differed significantly with respect to their total soil N uptake irrespective of treatment. Consequently, our data suggest that absolute N exploitation on the ecosystem level is determined by species or functional group identity and thus by community composition rather than by complementary biodiversity effects. Across functional groups, total N uptake from the soil was negatively correlated with leaf N concentrations, suggesting that these functional groups follow different N use strategies to meet their N demands. While our findings give no evidence for a biodiversity effect on the quantitative exploitation of different soil N pools, there is evidence for different and complementary N strategies and thus a potentially beneficial effect of functional group diversity on ecosystem functioning.  相似文献   

16.
Conservation of biodiversity relies heavily on protected areas but their role and effectiveness under a warming climate is still debated. We estimated the climate-driven changes in the temperature niche compositions of bird communities inside and outside protected areas in southern Canada. We hypothesized that communities inside protected areas include a higher proportion of cold-dwelling species than communities outside protected areas. We also hypothesized that communities shift to warm-dwelling species more slowly inside protected areas than outside. To study community changes, we used large-scale and long-term (1997–2019) data from the Breeding Bird Survey of Canada. To describe the temperature niche compositions of bird communities, we calculated the community temperature index (CTI) annually for each community inside and outside protected areas. Generally, warm-dwelling species dominated communities with high CTI values. We modeled temporal changes in CTI as a function of protection status with linear mixed-effect models. We also determined which species contributed most to the temporal changes in CTI with a jackknife approach. As anticipated, CTI was lower inside protected areas than outside. However, contrary to our expectation, CTI increased faster over time inside than outside protected areas and warm-dwelling species contributed most to CTI change inside protected areas. These results highlight the ubiquitous impacts of climate warming. Currently, protected areas can aid cold-dwelling species by providing habitat, but as the climate warms, the communities’ temperature compositions inside protected areas quickly begin to resemble those outside protected areas, suggesting that protected areas delay the impacts of climate warming on cold-dwelling species.  相似文献   

17.
Coexistence of the niche and neutral perspectives in community ecology   总被引:11,自引:0,他引:11  
Leibold MA  McPeek MA 《Ecology》2006,87(6):1399-1410
The neutral theory for community structure and biodiversity is dependent on the assumption that species are equivalent to each other in all important ecological respects. We explore what this concept of equivalence means in ecological communities, how such species may arise evolutionarily, and how the possibility of ecological equivalents relates to previous ideas about niche differentiation. We also show that the co-occurrence of ecologically similar or equivalent species is not incompatible with niche theory as has been supposed, because niche relations can sometimes favor coexistence of similar species. We argue that both evolutionary and ecological processes operate to promote the introduction and to sustain the persistence of ecologically similar and in many cases nearly equivalent species embedded in highly structured food webs. Future work should focus on synthesizing niche and neutral perspectives rather than dichotomously debating whether neutral or niche models provide better explanations for community structure and biodiversity.  相似文献   

18.
Gravel D  Beaudet M  Messier C 《Ecology》2008,89(10):2879-2888
Understanding coexistence of highly shade-tolerant tree species is a longstanding challenge for forest ecologists. A conceptual model for the coexistence of sugar maple (Acer saccharum) and American beech (Fagus grandibfolia) has been proposed, based on a low-light survival/high-light growth trade-off, which interacts with soil fertility and small-scale spatiotemporal variation in the environment. In this study, we first tested whether the spatial distribution of seedlings and saplings can be predicted by the spatiotemporal variability of light availability and soil fertility, and second, the manner in which the process of environmental filtering changes with regeneration size. We evaluate the support for this hypothesis relative to the one for a neutral model, i.e., for seed rain density predicted from the distribution of adult trees. To do so, we performed intensive sampling over 86 quadrats (5 x 5 m) in a 0.24-ha plot in a mature maple-beech community in Quebec, Canada. Maple and beech abundance, soil characteristics, light availability, and growth history (used as a proxy for spatiotemporal variation in light availability) were finely measured to model variation in sapling composition across different size classes. Results indicate that the variables selected to model species distribution do effectively change with size, but not as predicted by the conceptual model. Our results show that variability in the environment is not sufficient to differentiate these species' distributions in space. Although species differ in their spatial distribution in the small size classes, they tend to correlate at the larger size class in which recruitment occurs. Overall, the results are not supportive of a model of coexistence based on small-scale variations in the environment. We propose that, at the scale of a local stand, the lack of fit of the model could result from the high similarity of species in the range of environmental conditions encountered, and we suggest that coexistence would be stable only at larger spatial scales at which variability in the environment is greater.  相似文献   

19.
张红玉 《生态环境》2013,(8):1451-1456
生物入侵在全球范围内影响了生物群落的结构与功能,打破了群落内物种共存的生态格局,继而反馈性影响全球环境。该文就外来杂草紫茎泽兰入侵对生物群落之间交互作用的影响进行了分析。1)紫茎泽兰通过竞争排斥降低了土著植物群落的多样性,造成依赖于土著植物的节肢动物群落减少或丧失适宜的栖息环境。2)打破了土著植物与节肢动物之间相互依存的状态,并通过单优群落优势和强烈化感作用制约天敌昆虫的自然控制作用。3)通过改变地表生境和枯落物种类影响土壤动物群落。4)引起土壤微生物群落组成和功能的变化,改变土壤中可利用资源的形式和数量,影响并重塑了生物种间互作模式,并动态反馈于地面植物群落新格局的形成。分析指出:1)入侵过程中群落之间的交互作用通过多层次生态过程对群落结构与功能的生态改变发挥影响。2)入侵对生物群落的改变所产生的生态驱动反馈性作用于群落互作模式的重塑、群落和生态系统新格局的重建。同时,指出了生物入侵对群落影响的复杂性以及后续研究的方向。  相似文献   

20.
Positive interactions are widely recognized as playing a major role in the organization of community structure and diversity. As such, recent theoretical and empirical works have revealed the significant contribution of positive interactions in shaping species’ geographical distributions, particularly in harsh abiotic conditions. In this report, we explore the joint influence of local dispersal and an environmental gradient on the spatial distribution, structure and function of communities containing positive interactions. While most previous theoretical efforts were limited to modelling the dynamics of single pairs of associated species being mutualist or competitor, here we employ a spatially explicit multi-species metacommunity model covering a rich range of interspecific interactions (mutualism, competition and exploitation) along an environmental gradient. We find that mutualistic interactions dominate in communities with low diversity characterized by limited species dispersal and poor habitat quality. On the other hand, the fraction of mutualistic interactions decreases at the expense of exploitation and competition with the increase in diversity caused by higher dispersal and/or habitat quality. Our multi-species model exemplifies the ubiquitous presence of mutualistic interactions and the role of mutualistic species as facilitators for the further establishment of species during ecosystem assembly. We therefore argue that mutualism is an essential component driving the origination of complex and diverse communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号