首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BOOK REVIEWS     
Book review in this Article
Resources Management in the Great Lakes Basin , edited by F. A. Butrico, C.J. Touhill, and I. L. Whitman.
Water Management - Basic Issues. Organization for Economic Co-Operation and Development  相似文献   

2.
Relative cancer risks of chemical contaminants in the great lakes   总被引:1,自引:0,他引:1  
Anyone who drinks water or eats fish from the Great Lakes consumes potentially carcinogenic chemicals. In choosing how to respond to such pollution, it is important to put the risks these contaminants pose in perspective. Based on recent measurements of carcinogens in Great Lakes fish and water, calculations of lifetime risks of cancer indicate that consumers of sport fish face cancer risks from Great Lakes contaminants that are several orders of magnitude higher than the risks posed by drinking Great Lakes water. But drinking urban groundwater and breathing urban air may be as hazardous as frequent consumption of sport fish from the Great Lakes. Making such comparisons is difficult because of variation in types and quality of information available and in the methods for estimating risk. Much uncertainty pervades the risk assessment process in such areas as estimating carcinogenic potency and human exposure to contaminants. If risk assessment is to be made more useful, it is important to quantify this uncertainty.  相似文献   

3.
Mercury, a toxic metal known to have several deleterious affects on human health, has been one of the principal contaminants of concern in the Great Lakes basin. There are numerous anthropogenic sources of mercury to the Great Lakes area. Combustion of coal, smelting of non ferrous metals, and incineration of municipal and medical waste are major sources of mercury emissions in the region. In addition to North American anthropogenic emissions, global atmospheric emissions also significantly contribute to the deposition of mercury in the Great Lakes basin. Both the USA and Canada have agreed to reduce human exposure to mercury in the Great Lakes basin and have significantly curtailed mercury load to this region through individual and joint efforts. However, many important mercury sources, such as coal-fired power plants, still exist in the vicinity of the Great Lakes. More serious actions to drastically reduce mercury sources by employing alternative energy sources, restricting mercury trade and banning various mercury containing consumer products, such as dental amalgam are as essential as cleaning up the historical deposits of mercury in the basin. A strong political will and mass momentum are crucial for efficient mercury management. International cooperation is equally important. In the present paper, we have analyzed existing policies in respective jurisdictions to reduce mercury concentration in the Great Lakes environment. A brief review of the sources, occurrence in the Great Lakes, and the health effects of mercury is also included.  相似文献   

4.
ABSTRACT: Growing interest in agricultural irrigation in the Great Lakes basin presents an increasing competition to other uses of Great Lakes water. This paper, through a case study of the Mud Creek Irrigation District in the Saginaw Bay basin, Michigan, evaluates the potential hydrologic effects of withdrawing water for agricultural irrigation to the Great Lakes. Crop growth simulation models for corn, soybeans, dry beans, and the FAO Penman method were used to estimate the difference in evapotranspiration rates between irrigated and nonirrigated identical crops, based on climate, soil, and management data. The simulated results indicate that an additional 70–120 mm of water would be evapotranspirated during the growing season from irrigated crop fields as compared to nonirrigated identical plantings. Dependent upon the magnitude of irrigation expansion, an equivalent of about 1 to 5 mm of water from Lakes Huron-Michigan could be lost to the atmosphere. If agricultural irrigation further expands in the entire Great Lakes basin, the aggregated potential of water loss to the atmosphere through ET from all five Great Lakes would be even greater.  相似文献   

5.
Ecosystem‐based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods, we developed spatially equivalent watershed boundaries for the binational extent of the Basin to create the Great Lakes Hydrography Dataset (GLHD). The GLHD consists of 5,589 watersheds for the entire Basin, covering a total area of approximately 547,967 km2, or about twice the 247,003 km2 surface water area of the Great Lakes. The GLHD improves upon existing watershed efforts by delineating watersheds for the entire Basin using consistent methods; enhancing the precision of watershed delineation using recently developed flow direction grids that have been hydrologically enforced and vetted by provincial and federal water resource agencies; and increasing the accuracy of watershed boundaries by enforcing embayments, delineating watersheds on islands, and delineating watersheds for all tributaries draining to connecting channels. In addition, the GLHD is packaged in a publically available geodatabase that includes synthetic stream networks, reach catchments, watershed boundaries, a broad set of attribute data for each tributary, and metadata documenting methodology. The GLHD provides a common set of watersheds and associated hydrography data for the Basin that will enhance binational efforts to protect and restore the Great Lakes.  相似文献   

6.
The Great Lakes Basin Commission has initiated a Framework Study to assess the present and projected water- and related land-resource problems and demands in the Great Lakes Basin. Poorly defined objectives; incomplete and inconsistent data arrays; unknown air, biota, water, and sediment interactions; and multiple planning considerations for interconnected, large lake systems hinder objective planning. To incorporate mathematical modeling as a planning tool for the Great Lakes, a two-phase program, comprising a feasibility and design study followed by contracted and in-house modeling, data assembly, and plan development, has been initiated. The models will be used to identify sensitivities of the lakes to planning and management alternatives, insufficiencies in the data base, and inadequately understood ecosystem interactions. For the first time objective testing of resource-utilization plans to identify potential conflicts will provide a rational and cost-effective approach to Great Lakes management. Because disciplines will be interrelated, the long-term effects of planning alternatives and their impacts on neighboring lakes and states can be evaluated. Testing of the consequences of environmental accidents and increased pollution levels can be evaluated, and risks to the resource determined. Examples are cited to demonstrate the use of such planning tools.  相似文献   

7.
ABSTRACT Existing meteorological controls of water exchange by precipitation and evaporation on the Great Lakes are almost entirely inadvertent and related to man's urban-industrial complexes and their effect upon precipitation processes. These inadvertent effects have led to 10 to 40% increases in precipitation in localized areas within the basin. Envisioned growth of urban-industrial complexes within the Great Lakes region should lead to more inadvertent weather modification in the Basin. The only existing planned weather modification efforts are those at Lake Erie which are attempting to eliminate by redistribution the concentration of lake-derived heavy snowfall along the south shore. It appears reasonable to assume that practical increases of lake precipitation on the order of 5-20% could be achieved on an operational basis over the Great Lakes in the next 10 years, but the time of accomplishment will depend on national priorities, international cooperation, and economic factors. These activities would certainly produce a sizeable increase in the water quantity of the Great Lakes and should result in an improvement in water quality. Operational methods of evaporation suppression applicable to the lakes are just not available. Meteorological controls to ameliorate certain undesirable lake-effect snowstorms are a near reality.  相似文献   

8.
Some argue that a collective vision for the future of the Laurentian Great Lakes is embodied in the␣Great Lakes Water Quality Agreement (GLWQA). The GLWQA is a binational agreement, first signed in 1972 by Prime Minister Pierre Trudeau and President Richard Nixon, wherein the two countries (the Parties) commit to “restore and maintain the chemical, physical and biological integrity of the waters of the Great Lakes Basin Ecosystem.” Article X of the Agreement states that the Parties shall conduct a comprehensive review of the operation and effectiveness of this Agreement following every third biennial report of the [International Joint] Commission (IJC). The IJC’s 12th Biennial Report, released in 2004, triggered this important science, program, and policy review which commenced May 2006. This essay makes the case for a rigorous review, that explores deliberately the future scope of the Agreement to protect the world’s largest surface freshwater resource, and calls for innovation in the governance regime of this binational ecosystem.  相似文献   

9.
Understanding flood and erosion hazards in the context of developing coastal management plans requires an appreciation for variations in climate, geology, vegetation, land uses, human activities and institutional arrangements. On the Great Lakes, fluctuating water levels are characterized by temporal variations in their magnitude and frequency and their impact on flooding and erosion also differ from site to site. The traditional planning and management mechanisms in Ontario, through the use of emergency responses and land use setbacks, have been insufficient in resolving the rising costs of damage to property due to flooding and erosion along the Great Lakes shoreline. There is a need to develop an alternative management model with a focus on understanding hazards in the context of their natural and human components. A case study of the preparation of a resource survey for the Saugeen Valley Conservation Authority illustrates the development of a human ecological approach and its applicability in developing shoreline management plans for the Great Lakes.  相似文献   

10.
A total of 154 aquatic alien species have invaded the New York State Canal and Hudson River systems and a total of 162 aquatic species have invaded the Great Lakes Basin. Some of these invasive species are causing significant damage and control costs in both aquatic ecosystems. In the New York State Canal and Hudson River systems, the nonindigenous species are causing an estimated 500 million dollars in economic losses each year. The economic and environmental situation in the Great Lakes Basin is far more serious from nonindigenous species, with losses estimated to be about 5.7 billion dollars per year. Commercial and sport fishing suffer the most from the biological invasions, with about 400 million dollars in losses reported for the New York State Canal and Hudson River systems and 4.5 billion dollars in losses reported for the Great Lakes Basin.  相似文献   

11.
In accordance with the Great Lakes Water Quality agreement and the Great Lakes Critical Protections Act, the Great Lakes States have developed (or are developing) remedial action plans (RAPs) for severely degraded areas of concern (AOCs). To provide citizen input into the planning process, state environmental agencies have established citizens' advisory groups (CAGs) for each AOC. These CAGs have been hailed as the key to RAP success, yet little is known about their role in the planning process. In this paper, we examine the constitution, organization and activities of CAGs in three Lake Michigan AOCs by comparing CAGs to municipal planning commissions, citizen advisory commissions and councils of government. We find that CAGs, like other advisory bodies, can provide public input into the planning process, foster communication between government agencies and special interest groups, and facilitate intergovernmental co-ordination. Also like other advisory bodies, however, CAGs can fail to represent all constituencies in the AOCs, have limited influence on agencies plans and activities, and lack the authority to assure the co-operation of local governments.  相似文献   

12.
ABSTRACT: Water level fluctuations of the Great Lakes often have created regional controversies among the states and Canadian provinces that share this vast resource. Even though the 100-year range of their water levels is only four to five feet, episodes of high and low Great Lakes water levels have been a recurring problem throughout the twentieth century. The possibility of increased diversion and consumptive use has exacerbated the existing conflicts over how to manage this water resource. A research project evaluated the effects of interbasin diversion on the Great Lakes system and on the industries that depend on the maintenance of historical water levels, namely hydropower and commercial navigation. The simulation approach employed in this research and some of the important findings are presented. The approach is similar to that used in recent government studies of Great Lakes water level regulation. Several significant modifications were made specifically addressing the diversion issue. Aggregate annual impacts to hydropower and shipping resulting from a diversion of 10,000 cubic feet per second were found to vary from 60 to 100 million dollars. Increases in impacts as a function of diversion rate are nonlinear for the navigation industry.  相似文献   

13.
/ A method adapted from the National Weather Service's Extended Streamflow Prediction technique is applied retrospectively to three Great Lakes case studies to show how risk assessment using probabilistic monthly water level forecasts could have contributed to the decision-mak-ing process. The first case study examines the 1985 International Joint Commission (IJC) decision to store water in Lake Superior to reduce high levels on the downstream lakes. Probabilistic forecasts are generated for Lake Superior and Lakes Michigan-Huron and used with riparian inundation value functions to assess the relative impacts of the IJC's decision on riparian interests for both lakes. The second case study evaluates the risk of flooding at Milwaukee, Wisconsin, and the need to implement flood-control projects if Lake Michigan levels were to continue to rise above the October 1986 record. The third case study quantifies the risks of impaired municipal water works operation during the 1964-1965 period of extreme low water levels on Lakes Huron, St. Clair, Erie, and Ontario. Further refinements and other potential applications of the probabilistic forecast technique are discussed.KEY WORDS: Great Lakes; Water levels; Forecasting; Risk; Decision making  相似文献   

14.
Human Influences on Water Quality in Great Lakes Coastal Wetlands   总被引:2,自引:0,他引:2  
A better understanding of relationships between human activities and water chemistry is needed to identify and manage sources of anthropogenic stress in Great Lakes coastal wetlands. The objective of the study described in this article was to characterize relationships between water chemistry and multiple classes of human activity (agriculture, population and development, point source pollution, and atmospheric deposition). We also evaluated the influence of geomorphology and biogeographic factors on stressor-water quality relationships. We collected water chemistry data from 98 coastal wetlands distributed along the United States shoreline of the Laurentian Great Lakes and GIS-based stressor data from the associated drainage basin to examine stressor-water quality relationships. The sampling captured broad ranges (1.5–2 orders of magnitude) in total phosphorus (TP), total nitrogen (TN), dissolved inorganic nitrogen (DIN), total suspended solids (TSS), chlorophyll a (Chl a), and chloride; concentrations were strongly correlated with stressor metrics. Hierarchical partitioning and all-subsets regression analyses were used to evaluate the independent influence of different stressor classes on water quality and to identify best predictive models. Results showed that all categories of stress influenced water quality and that the relative influence of different classes of disturbance varied among water quality parameters. Chloride exhibited the strongest relationships with stressors followed in order by TN, Chl a, TP, TSS, and DIN. In general, coarse scale classification of wetlands by morphology (three wetland classes: riverine, protected, open coastal) and biogeography (two ecoprovinces: Eastern Broadleaf Forest [EBF] and Laurentian Mixed Forest [LMF]) did not improve predictive models. This study provides strong evidence of the link between water chemistry and human stress in Great Lakes coastal wetlands and can be used to inform management efforts to improve water quality in Great Lakes coastal ecosystems.  相似文献   

15.
16.
Conventional surplus production models indicate that destruction of fish populations by overfishing is difficult, if not impossible, but catastrophic declines in abundance of exploited populations are common. Surplus production models also do not predict large continuing fluctuations in yield, but large fluctuations in yield are common. Conventional surplus production models assume that fisheries do not impact the population's capacity to increase, but changes in age structure or a decrease in age-specific fecundity resulting from fishing can decrease the coefficient of increase. A surplus production model is developed in which fishing reduces the capacity of a population to increase; the model is applied to describe the fluctuations observed in yield of lake herring (Coregonus artedii) from the upper Great Lakes. The fisheries of the Great Lakes were decimated by the combined effects of heavy fishing and a changing environment. For some species, yield increased to high levels and then the fisheries collapsed; for other species, yield and effort fluctuated greatly.  相似文献   

17.
Neither Canada nor the United States attach much importance to the International Joint Commission (IJC) judging by the size of staffs and annual budgets. The Commission has been restricted to a relatively minor number of functions in the Great Lakes-St. Lawrence. It has investigated: the degree and causes of water and air quality deterioration; the effects of hydroelectric and navigation projects on water levels; the impacts of water-level fluctuations; and the feasibility of a deep waterway from the St. Lawrence to the Hudson River. Projects approved by the Commission have produced less than might be expected through no fault of the Commission. The Great Lakes Fishery Commission has promoted little international management. Budgetary limitations restrict its lamprey control program; institutional limitations restrict its ability to deal effectively with fishery problems. Commission responsibilities are limited to coordination and advisory functions. Since Canada and the United States have not chosen to refer most aspects of river basin management to international bodies, an institutional void exists in the Great Lakes Basin to consider these questions on a continuous basis. There is a need for expanded international cooperation.  相似文献   

18.
Robertson, Dale M. and David A. Saad, 2011. Nutrient Inputs to the Laurentian Great Lakes by Source and Watershed Estimated Using SPARROW Watershed Models. Journal of the American Water Resources Association (JAWRA) 47(5):1011‐1033. DOI: 10.1111/j.1752‐1688.2011.00574.x Abstract: Nutrient input to the Laurentian Great Lakes continues to cause problems with eutrophication. To reduce the extent and severity of these problems, target nutrient loads were established and Total Maximum Daily Loads are being developed for many tributaries. Without detailed loading information it is difficult to determine if the targets are being met and how to prioritize rehabilitation efforts. To help address these issues, SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed for estimating loads and sources of phosphorus (P) and nitrogen (N) from the United States (U.S.) portion of the Great Lakes, Upper Mississippi, Ohio, and Red River Basins. Results indicated that recent U.S. loadings to Lakes Michigan and Ontario are similar to those in the 1980s, whereas loadings to Lakes Superior, Huron, and Erie decreased. Highest loads were from tributaries with the largest watersheds, whereas highest yields were from areas with intense agriculture and large point sources of nutrients. Tributaries were ranked based on their relative loads and yields to each lake. Input from agricultural areas was a significant source of nutrients, contributing ~33‐44% of the P and ~33‐58% of the N, except for areas around Superior with little agriculture. Point sources were also significant, contributing ~14‐44% of the P and 13‐34% of the N. Watersheds around Lake Erie contributed nutrients at the highest rate (similar to intensively farmed areas in the Midwest) because they have the largest nutrient inputs and highest delivery ratio.  相似文献   

19.
Development of plans to restore degraded areas in the Great Lakes   总被引:3,自引:0,他引:3  
The International Joint Commission's Water Quality Board has identified 42 Areas of Concern in the Great Lakes ecosystem where Great Lakes Water Quality Agreement objectives or jurisdictional standards, criteria or guidelines, established to protect uses, have been exceeded and remedial actions are necessary to restore beneficial uses. As a result of the 1985 report of the Water Quality Board, the eight Great Lakes states and the Province of Ontario committed themselves to developing a remedial action plan (RAP) to restore all uses in each Area of Concern within their political boundaries. Each RAP must identify the specific measures necessary to control existing sources of pollution, abate existing contamination (e.g., contaminated sediments), and restore all beneficial uses. Points which must be explicitly addressed in each RAP include: geographic extent of problem, beneficial uses impaired, causes of problems, remedial measures and a schedule for implementation, responsible agencies, and surveillance and monitoring activities that will be used to track effectiveness of remedial actions. The jurisdictions are responsible for developing RAPs, and the International Joint Commission is responsible for evaluating the adequacy of each RAP and tracking progress in restoring beneficial uses.  相似文献   

20.
ABSTRACT: Two scenarios of CO2-induced climatic change are used to estimate changes in water use for a number of municipalities in the Great Lakes region of Canada and the United States. Both scenarios, based on General Circulation Models produced by the Goddard Institute for Space Studies (GISS) and Geophysical Fluid Dynamics Lab (GFDL), project warmer temperatures for the region. Using regression models based on monthly potential evapotranspiration for individual cities, it is projected that annual per capita water use will increase by a small amount, which will probably have only a marginal effect on water supplies in the Great Lakes basin. This method could also be used to assess the potential impacts of CO2-induced climatic change on water use by the agriculture and power sectors, as well as the effectiveness of water policy initiatives, such as price changes. More work is needed to project water use during peak periods (warm dry spells), which may occur more frequently in a 2 × CO2 climate in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号