首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous‐phase liquids (NAPLs) can present significant technical and financial (long‐term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off‐gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off‐gas treatment technology selection in this article allows for more in‐depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic‐compression and condensation combined with regenerative adsorption (C3–Technology). Of particular challenge to the off‐gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off‐gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off‐gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off‐gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off‐gas treatment technologies and a region‐specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3–Technology. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
The Introduction to Therm Net technology is an overview of how radio frequency (RF) beating can be implemented to enhance conventional remediation technologies. Included in the article is a case study of a project conducted in March 1996 at a gasoline release site. The project consisted of a “hot spot” application to reduce BETX concentrations to achieve site closure. The application consisted of RF heating, soil vapor extraction, and groundwater ventilation. A bench scale study was also conducted to measure the effects that RF heating and vapor extraction had on the removal of PAH constitutents from a coal tar sludge. Up to 100 percent reductions were observed for some of the constituents in the study. Also included is a graphical representation of temperature versus vapor pressure for contaminants typically encountered at remediation sites, illustrating that as temperature increases, the removal rate increases.  相似文献   

3.
4.
Mechanical blending of contaminated soil with amendments has recently reemerged as an important treatment technology. From its original application using large‐diameter augers in the early 1990s to the current use of rotary drum blenders, soil blending is being used as an alternative to other remediation technologies like amendment injection and soil vapor and groundwater extraction. Shallow (approximately 10 m below ground surface [bgs] or less) soil blending also offers an alternative to excavation and disposal. Soil blending has been used to remediate a site with various contaminants including, but not limited to, chlorinated solvents, petroleum, and metals. The types of soils susceptible to soil blending vary from sands and gravels to silts and clays to fractured rock and combinations of all of these. The types of amendments blended include oxidants, reducing agents, biological enhancements, and stabilizing amendments. Soil blending systems deliver the power to the mixing head to adequately mix the soil and amendment to enhance remediation effectiveness. Since long‐term contamination is often a result of heterogeneously distributed residual contaminant in localized source zones that are difficult to access, the typical aim of soil blending is to homogenize the soil while effectively distributing amendment to these zones made accessible by blending. By effectively homogenizing the soil, however, soil blending will increase the void ratio and disrupt the shear strength and bearing capacity of the soil so an important component of a soil blending technology is proper recovery of these geotechnical parameters. This can be achieved by using well‐known soil improvement techniques such as amending all or a portion of the blended area with Portland cement or lime. Several case studies of soil blending treatments of different contaminants and amendments in various soil types are provided.  相似文献   

5.
Soil vapor extraction (SVE) systems are typically designed based on the results of a vadose‐zone pumping test (transient or steady‐state) using a pressure criterion to establish the zone of influence (ZOI). A common problem associated with pressure‐based SVE design is overestimating the ZOI of the extraction well. As a result, design strategies based upon critical pore‐ gas velocity (CPGV) have become more common. Field tests were conducted at the Savannah River Site (SRS) to determine the influence of a vapor extraction well based upon both a pressure and pore‐ gas velocity design criterion. The results from these tests show that an SVE system designed based upon a CPGV is more robust and will have shorter cleanup times due to increased flow throughout the treatment zone. Pressure‐based SVE design may be appropriate in applications where soil gas containment is the primary objective; however, in cases where the capture and removal of contaminated soil gas is the primary objective, CPGV is a better design criterion. © 2006 Wiley Periodicals, Inc.  相似文献   

6.
A method of analyzing soil vapor extraction (SVE) laboratory data using a sample of contaminated soil is presented to allow the calculation of equilibrium constants for an assumed gas/soil equilibrium expression. The constants can be determined for any compound measured in the exit gas. A Freundlich equilibrium expression was shown to represent the equilibrium in a soil contaminated with trichloroethylene (TCE) and several aromatic solvents.  相似文献   

7.
An analysis of the cost effectiveness of passive soil vapor extraction (PSVE) is presented. PSVE, or “barometric pumping,” is an approach to the remediation of volatile organic compounds (VOCs) that seeks to harness and enhance the naturally occurring processes of wind and atmospheric pressure changes to facilitate the release of gas-phase contaminants from the subsurface. The technology background and current status are discussed, niches for the potential applicability of PSVE are identified, and a cost comparison with the conventional treatment method of active soil vapor extraction (ASVE) is examined.  相似文献   

8.
Although vapor extraction systems (VES) certainly help remediate volatile hydrocarbons (e.g., gasoline in unsaturated soils), recent studies have found that much of the related hydrocarbon removal is due to aerobic biodegradation, not simple volatilization. In many cases, more than 50 percent of the hydrocarbon removal by these systems is due to biodegradation. By emphasizing biodegradation and minimizing volatilization, the costs of system operation can be reduced, especially for off-gas treatment. Maximizing biodegradation also supports more efficient site remediation because not only are the volatile hydrocarbons cleaned up, but the less volatile contaminants are also cleaned up—by biodegradation. More complete site cleanups are possible through bioventing, especially when cleanup criteria are related to total petroleum hydrocarbons. This article explores the major environmental conditions that influence biodegradation, analyzes several bioventing case histories, and calculates biodegradation's remedial costs.  相似文献   

9.
Although known to be one of the most effective oxidants for treatment of organic contaminants, catalyzed hydrogen peroxide (CHP) is typically not used for soil mixing applications because of health and safety concerns related to vapor generation and very rapid rates of reaction in open excavations. In likely the first large‐scale in situ CHP soil mixing application, an enhanced CHP, modified Fenton's reagent (MFR), was applied during soil mixing at the Kearsarge Metallurgical Superfund Site in New Hampshire. An innovative rotating dual‐axis blender (DAB) technology was used to safely mix the MFR into low‐plasticity silt and clay soils to remediate residual 1,1,1‐trichloroethane (111TCA); 1,1‐dichloroethene (11DCE); and 1,4‐dioxane (14D). It was expected that the aggressive treatment approach using relatively “greener” hydrogen peroxide (HP) chemistry would effectively treat Site contaminants without significant byproduct impacts to groundwater or the adjacent pond. The remediation program was designed to treat approximately 3,000 cubic yards of residual source area soil in situ by aggressively mixing MFR into the soils. The subsurface interval treated was from 7 to 15 feet below ground surface. To accurately track the soil mixing process and MFR addition, the Site was divided into 109 10‐foot square treatment cells that were precisely located, dosed, and mixed using the DAB equipped with an on‐board GPS system. The use of stabilizing agents along with careful calculation of the peroxide dose helped to ensure vapor‐free conditions in the vicinity of the soil mixing operation. Real‐time sampling and monitoring were critical in identifying any posttreatment exceedences of the cleanup goals. This allowed retreatment and supplemental testing to occur without impacting the soil mixing/in situ chemical oxidation (ISCO) schedule. Posttreatment 24‐hr soil samples were collected from 56 random locations after ensuring that the HP had been completely consumed. The posttreatment test results showed that 111TCA and 11DCE concentrations were reduced to nondetect (ND) or below the cleanup goals of 150 μg/kg for 111TCA and 60 μg/kg for 11DCE. Supplemental posttreatment soil samples, collected six months after treatment, showed 100 percent compliance with the soil treatment goals. Groundwater samples collected one year after the MFR soil mixing treatment program showed either ND or low concentrations for 111TCA, 11DCE, and 14D. Successful stabilization and site restoration was performed after overcoming considerable challenges associated with loss of soil structure, high liquid content, and reduced bearing capacity of the blended soils.  相似文献   

10.
Although a soil vapor extraction system (SVES) had effectively remediated the vadose zone soils at a gasoline spill site in Pawtucket, Rhode Island, gasoline remained in the soils below the water table. The state Department of Environmental Management (DEM) closure criteria of 10,000 parts per billion (ppb) were still not met after five years. This article describes how an air sparging system was added to the effort for $57,000, and how after three weeks, closure criteria were achieved.  相似文献   

11.
Air sparging is an innovative methodology for remediating organic compounds present in contaminated, saturated soil zones. In the application of the technology, sparging (injection) wells are used to inject a hydrocarbon-free gaseous medium (typically air) into the saturated zone below or within the areas of contamination. Two major mechanisms of remediation are engaged/enhanced due to the sparging process. First, volatile organic compounds are dissolved in the groundwater and sorbed on the soil partition into the advective air phase, effectively simulating an in-situ air stripping system. The stripped contaminants are transported in the air phase to the vadose zone, generally within the radius of influence of a standard vapor extraction and vapor treatment system. Second, with optimal environmental conditions, volatile and semivolatile organic compounds may be biodegraded by utilizing the sparging process to oxygenate the groundwater, thereby enhancing the growth and activity of the indigenous bacterial community. Air sparging is a complex multifluid phase process which has been applied successfully in Europe since the mid-1980s. Major design considerations include site geology, contaminant type, gas injection pressures and flow rates, injection interval (areal and vertical), and site-specific biofeasibility parameters. Site-specific geology and biofeasibility are the dominant design parameters. Pilot testing and full-scale design considerations should also be addressed. Mathematical models have been developed to simulate the air flow field during the sparging process and to examine the limitations imposed by site geology. Correct design and operation of this technology have been demonstrated to achieve groundwater cleanup to low part-per-billion contaminant levels. Incorrect design and operation can introduce significant pollution liability through undesirable contaminant migration in both the dissolved and vapor phases.  相似文献   

12.
Bench‐scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites included in the National Priority List. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlorophenol (PCP), dioxins, and heavy metals. The effectiveness of the solvent extraction process was assessed using liquefied propane or dimethyl ether as solvents over a range of operating conditions. These studies have demonstrated that a two‐stage solvent extraction process using dimethyl ether as a solvent at a ratio of 1.61 per kg of soil could decrease dioxin levels in the soil by 93.0 to 98.9 percent, and PCP levels by 95.1 percent. Reduction percentages for benzo(a)pyrene (BaP) potency estimate and total detected PAHs were 82.4 and 98.6 percent, respectively. Metals concentrations were not reduced by the solvent extraction treatment. These removal levels could be significantly improved using a multistage extraction system. Commercial scale solvent extraction using liquefied gases costs about $220 per ton of contaminated soil. However, field application of this technology at the United Creosote site, Conroe, Texas, failed to perform to the level observed at bench scale due to the excessive foaming and air emission problem. Soil washing using surfactant solution and wet screening treatability studies were also performed on the soil samples in order to assess remediation strategies for sites. Although aqueous phase solubility of contaminants seemed to be the most important factor affecting removal of contaminants from soil, surfactant solutions (3 percent by weight) having nonionic surfactants with hydrophile‐lipophile balance (HLB) of about 14 (Makon‐12 and Igepal CA 720) reduced the PAH levels by an average of 71 percent, compared to no measurable change when pure deionized water was used. Large fractioza of clay and silt (<0.06mm), high le!ezielsof orgaizic contami‐ nants and hzimic acid can makesoil washing less applicable.  相似文献   

13.
Traditional bioremediation approaches have been used to treat petroleum source contamination in readily accessible soils and sludges. Contamination under existing structures is a greater challenge. Options to deal with this problem have usually been in the extreme (i.e., to dismantle the facility and excavate to an acceptable regulated residual, or to pump and treat for an inordinately long period of time). The excavated material must be further remediated and cleanfill must be added to close the excavation. If site assessments were too conservative or incomplete, new contamination adulterating fill soils may result in additional excavation at some later date. Innovative, cost-efficient technologies must be developed to remove preexisting wastes under structures and to reduce future remediation episodes. An innovative soil bioremediation treatment method was developed and evaluated in petroleum hydrocarbon contaminated (PHC) soils at compressor stations of a natural gas pipeline running through Louisiana. The in-situ protocol was developed for remediating significant acreage subjected to contamination by petroleum-based lubricants and other PHC products resulting from a chronic leakage of lubricating oil used to maintain the pipeline itself. Initial total petroleum hydrocarbon (TPH) measurements revealed values of up to 12,000 mg/kg soil dry weight. The aim of the remediation project was to reduce TPH concentration in the contaminated soils to a level of <200 mg/kg soil dry weight, a level negotiated to be acceptable to state and federal regulators. After monitoring the system for 122 days, all sites showed greater than 99-percent reduction in TPH concentration.  相似文献   

14.
A pilot study was completed at a fractured crystalline bedrock site using a combination of soil vapor extraction (SVE) and in‐situ chemical oxidation (ISCO) with Fenton's Reagent. This system was designed to destroy 1,1,1‐trichloroethane (TCA) and its daughter products, 1,1‐dichloroethene (DCE) and 1,1‐dichloroethane (DCA). Approximately 150 pounds of volatile organic compounds (VOCs) were oxidized in‐situ or removed from the aquifer as vapor during the pilot study. Largely as a result of chemical oxidation, TCA concentrations in groundwater located within a local groundwater mound decreased by 69 to 95 percent. No significant rebound in VOC concentration was observed in these wells. Wells located outside of the groundwater mound showed less dramatic decreases in VOC concentration, and the data show that vapor stripping and short‐term groundwater migration following the oxidant injection were the key processes at these wells. Although the porosity of the aquifer at the site is on the order of 2 percent or less, the pilot study showed that SVE could be an effective remedial process in fractured crystalline rock. © 2002 Wiley Periodicals, Inc.  相似文献   

15.
Oxygen Release Compound (ORC®) is a patented formulation of intercalated magnesium peroxide that releases oxygen slowly when hydrated. ORC treatment represents a “low intensity” approach to site remediation. It provides a simple, passive, low-cost and long-term acceleration of aerobic natural attenuation and has been shown to cost-effectively reduce time to site closure. ORC is now a proven technology as evidenced by its five years of use on over 5,000 sites in 50 states and 11 countries, and the existence of a full body of independent, peer reviewed literature on its performance. The first applications of ORC were for the treatment of benzene, toulene, ethylbenzene, and xylene (BTEX) and other light petroleum hydrocarbon fractions. Use has now expanded to the treatment of heavier fractions such as heating oil and some of the Polycyclic aromatic hydrocarbons (PAHs). More recently. ORC has been used to bioremediate the highly mobile and problematic gasoline oxygenate methyl tertiary butyl ether (MTBE) and has been applied to sites impacted with nitroaromatics, chloroaromatics, and some of the lower-order chlorinated hydrocarbons that can be treated aerobically—most notably vinyl chloride. Since ORC is an insoluble powder, it can be packaged in material composed of a specially designed filter fabric. These “filter socks” are then contacted with contaminated groundwater via an array of wells or trenches. ORC can also be mixed directly with water to form a slurry for permanent injection applications in the saturated zone or dispersed in powdered form for the in-situ or ex-situ treatment of soil. A broad array of treatment points, in which ORC slurry is backfilled or injected, can be implemented with low-cost, small-bore push-point technologies to directly treat dissolved phase plumes and moderate levels of sorbed contaminants. Powder or slurry is traditionally used in the remediation of residual contamination at the bottom of contaminated soil excavations. © 1999 John Wiley & Sons, Inc.  相似文献   

16.
Although standard methods of monitoring the progress of in-situ remediation may provide general results for the most permeable zones affected by soil vapor extraction or bioventing, they are essentially unsuccessful at providing information on the degree of heterogeneity within the remediation zone and on the existence of “hot spots.” Data are presented that suggest that monitoring the concentrations of fixed and biogenic gases and measuring soil permeability on a small-scale basis may circumvent the common problems associated with assessing the progress of in-situ remediation. The costs of these monitoring techniques are minor compared to those of designing and operating an in-situ remediation system, and may save additional time and costs by identifying problem areas early in the cleanup process.  相似文献   

17.
The thrust of this study is to develop an in-situ method/technique capable of modifying the contaminated soil environment and maximizing contaminant extraction. Contaminated soils were compacted in electrokinetic cells to densities similar to natural field conditions. Conditioning fluids were used during the application of a direct current to solubilize the precipitated forms of heavy metals. Mobilization of contaminants as a function of time was quantified by analysing metal ion concentrations in the extracted effluents at both the anode and cathode and in the compacted specimens. For each conditioning fluid used, the removal efficiencies were evaluated based on both effluent and soil concentrations.  相似文献   

18.
Contamination of soil and sediment by pollutants represents a major environmental challenge. Remediation of soil during the original Superfund years consisted primarily of dig and haul, capping, or containment. The 1986 amendments to CERCLA—SARA—provided the incentive for treatment and permanent remedies during site remediation. Thermal treatment, which routinely achieves the low cleanup criteria required by RCRA land-ban regulations, became one of the major technologies used for cleanup under the concept of ARAR. As the remediation industry matured and recognized specific market niches in soil remediation, a number of new technologies emerged. Thermal desorption, bioremediation, soil vapor extraction, soil washing, and soil extraction are being used on sites at which the technology offers advantages over incineration. In addition, a continuing stream of emerging technologies is being presented that requires careful evaluation relative to existing cleanup methods. Each of these technologies offers a range of options for achieving appropriate cleanup criteria, application to different soil matrices, cost, time of remediation, and public acceptability. Balancing cleanup criteria defined by regulation or risk assessment with technology cost and capability affords the opportunity to solve these problems with appropriate balance of cost and protection of human health and the environment.  相似文献   

19.
A new process for enhancing in-situ remediation of low-permeability soil and rock formations is presently under development at the Hazardous Substance Management Research Center (HSMRC). The patented process, known as ?pneumatic fracturing,”? consists of injecting high-pressure air or other gas into contaminated geologic formations at controlled flow rates and pressures. In fine-grained soils such as clay, pneumatic fracturing creates conductive channels in the formation, thereby increasing the permeability and exposed surface area of the contaminated soil. The potential benefits of pneumatic fracturing are significant, since in-situ remedial technologies are essentially limited by the pore gas exchange rate of the soil being treated. This article describes the results of a recent demonstration of pneumatic fracturing at an industrial site to enhance a volatile organic compound (VOC) extraction system. After establishing the baseline removal rate of soil gas effluent from the clay, soil surrounding the extraction system was fractured to enhance VOC with drawal. A substantial improvement in the VOC removal rate was observed, including: (1) flush effluent concentrations that increased up to 200 times; and (2) air flows in the formation that increased up to 1,000 times.  相似文献   

20.
The MicroBlower Sustainable Soil Vapor Extraction System is a cost‐effective device specifically designed for remediation of organic compounds in the vadose zone. The system is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction to natural attenuation. It can also be a better choice for remediating small source zones that are often found in “tight zones” that are controlled by diffusion rate. The MicroBlower was developed by the Savannah River National Laboratory at the US Department of Energy's Savannah River Site to address residual volatile organic compound (VOC) contamination after shutdown of active soil vapor extraction systems. In addition, the system has been deployed to control recalcitrant sources that are controlled by diffusion rates. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号