首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The injection of remediation compounds has rapidly become a widely accepted approach for addressing contaminated sites. One of the most fundamental questions surrounding the use of in situ remediation has been “What compound are you injecting at your site?” With the advances in the industry's understanding and acceptance of the in situ remediation process remediation professionals are now asking a follow‐up question that has become equally important to the success of a project: “How are you injecting a compound at your site?” This article discusses advances in field applications for in situ remediation and injecting remediation compounds. © 2003 Wiley Periodicals, Inc.  相似文献   

2.
An Erratum has been published for this article in Remediation 14(4) 2004, 141. The selection of remediation options for the management of unacceptable risks at contaminated sites is hindered by insufficient information on their performance under different site conditions. Therefore, there is a need to define “operating windows” for individual remediation options to summarize their performance under a variety of site conditions. The concept of the “operating window” has been applied as both a performance optimization tool and decision support tool in a number of different industries. Remediation‐option operating windows could be used as decision support tools during the “options appraisal” stage of the Model Procedures (CLR 11), proposed by the Environment Agency (EA) for England and Wales, to enhance the identification of “feasible remediation options” for “relevant pollutant linkages.” The development of remediation‐option operating windows involves: 1) the determination of relationships between site conditions (“critical variables”) and option performance parameters (e.g., contaminant degradation or removal rates) and 2) the identification of upper‐ and lower‐limit values (“operational limits”) for these variables that define the ranges of site conditions over which option performance is likely to be sufficient (the “operating window”) and insufficient (the “operating wall”) for managing risk. Some research has used case study data to determine relationships between critical variables and subsurface natural attenuation (NA) process rates. Despite the various challenges associated with the approach, these studies suggest that available case study data can be used to develop operating windows for monitored natural attenuation (MNA) and, indeed, other remediation options. It is envisaged that the development of remediation‐option operating windows will encourage the application of more innovative remediation options as opposed to excavation and disposal to landfill and/or on‐site containment, which remain the most commonly employed options in many countries. © 2004 Wiley Periodicals, Inc.  相似文献   

3.
When a pollution incident occurs, there can be impact liability and/or remediation liability on the polluter. The impact liability pays for the loss of life and property due to pollution. The remediation liability is to pay for remediating the environment in accordance with applicable laws and regulations. If there is only one polluter in a pollution incident, the entire liability can be placed on the sole polluter. However, liability allocation becomes complex when there are multiple polluters. To allocate the fractional remediation liability among multiple polluters, it is important to identify the factors that determine the cost of remediation so that a just distribution of liability can be made based on the contribution of each polluting party to the factors identified. Along with factors such as “quantity of the chemical released by the polluter,” “distribution of the chemical in the environmental medium,” “persistence of the chemical in the environmental medium,” and so forth, the ease with which the chemical pollutant can be separated from the contaminated medium, which we name as “remediability,” is important in deciding the remediation liability. The “remediability” of a chemical is critical in selecting the remediation technologies to be adopted and, consequently, in deciding the cost of remediation. Determination of a remediability score (RS) for each “chemical–environment medium” pair will help in quantifying the ease with which the site can be remediated. The score is envisaged on a 0–100 scale. The higher the score, the more difficult it is to remediate the chemical in the environmental medium under consideration. The score is estimated based on a set of predetermined factors that are characteristic to the technologies available for remediation. The factors are then subjected to a Delphi process to arrive at the weights. The overall RS is determined by determining the weighted impact of the identified factors after the normalization of the magnitudes of factors.  相似文献   

4.
In situ remediation is inherently considered “green remediation.” The mechanisms of destruction by in situ technologies, however, are often unseen and not well understood. Further, physical effects of amendment application affect concentration data in an identical manner as the desired reactive mechanism. These uncertainties have led to the weight‐of‐evidence approach when proving viability: multiple rounds of data collection, bench studies, pilot studies, and so on. Skipping these steps has resulted in many failed in situ applications. Traditional assessment data are often tangential to the desired information (e.g., “Is contaminant being destroyed or just being pushed around and diluted?” and “What is the mechanism of the destruction and can it be monitored directly?”). An advanced site diagnostic tool, “Three‐Dimensional Compound Specific Stable Isotope Analysis” (3D‐CSIA), can assess the viability of in situ technologies by providing definitive data on contaminant destruction that are not concentration‐related. The 3D‐CSIA tool can also locate source zones and apportion remediation cost by identifying plumes of different isotope signatures and fractionation trends. Further, use of the 3D‐CSIA tool allows remediation professionals to evaluate effectiveness of treatment and make better decisions to expedite site closure and minimize costs. This article outlines the fundamentals of advanced site diagnostic tool 3D‐CSIA in detail, and its benefit is highlighted through a series of case studies at chlorinated solvent–contaminated sites. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
An “oxygen barrier” was formed by depositing an oxygen-releasing compound in a series of wells that were placed perpendicular to the direction of groundwater flow at a site in Belen, New Mexico. The objective was to enhance the intrinsic bioremediation of dissolved phase BTEX contamination in the aquifer and to quantify the results. The oxygen was supplied by a controlled release formulation of magnesium peroxide called Oxygen Release Compound (ORC®), a virtually insoluble powder that is packaged in polyester filter socks. The areal distributions of the initial concentrations of dissolved oxygen and BTEX were measured and compared to the concentration changes at various times in the first 93 days of system operation. The concomitant reduction in BTEX can be seen in a series of contour plots. In 93 days, dissolved oxygen had dispersed at least 20-feet downgradient from the ORC source wells based on the pattern of decreasing BTEX concentrations.  相似文献   

6.
In the past decade, management of historically contaminated land has largely been based on prevention of unacceptable risks to human health and the environment, to ensure a site is “fit for use.” More recently, interest has been shown in including sustainability as a decision‐making criterion. Sustainability concerns include the environmental, social, and economic consequences of risk management activities themselves, and also the opportunities for wider benefit beyond achievement of risk‐reduction goals alone. In the United Kingdom, this interest has led to the formation of a multistakeholder initiative, the UK Sustainable Remediation Forum (SuRF‐UK). This article presents a framework for assessing “sustainable remediation”; describes how it links with the relevant regulatory guidance; reviews the factors considered in sustainability; and looks at the appraisal tools that have been applied to evaluate the wider benefits and impacts of land remediation. The article also describes how the framework relates to recent international developments, including emerging European Union legislation and policy. A large part of this debate has taken place in the “grey” literature, which we review. It is proposed that a practical approach to integrating sustainability within risk‐based contaminated land management offers the possibility of a substantial step forward for the remediation industry, and a new opportunity for international consensus. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
In 1957, four computers across the United States were linked to form the first version of what we now know to be the Internet. The Internet has grown way beyond what anyone working in the U.S. Department of Defense's special project team, Advanced Research Projects Agency or DARPA, more than 40 years ago, could ever have imagined. Yet despite the phenomenal growth of Internet users, and access to information in all fields of endeavor, finding genuinely useful and helpful Internet resources is still a challenge. Knowledge sharing in contaminated site assessment and remediation is increasing and this is occurring through several mechanisms and at many levels. International collaboration on site contamination and remediation issues is becoming evident at the highest level between countries. Lower‐level interactions between organizations and individual practitioners are also increasing. Formation of partnerships in implementing site assessment and remediation solutions are becoming evident and there are now numerous websites, resulting from these collaborations, providing free access to completed reports and related materials. Internet mailing lists contribute to sharing of knowledge at all these levels but particularly encourage contributions from practitioners and those out there “doing the work” and often without the time to write up their contributions, though these can be substantial.  相似文献   

8.
9.
Oil fly ash (OFA) contains environmentally toxic heavy metal and substituted polycyclic aromatic hydrocarbons. This review discusses the physical and chemical properties of OFA and presents information from other types of fly ash that can be used as concepts for the remediation and uses of OFA. Electrokinetic remediation is useful to remove some of the heavy metals for broader uses of the fly ash in agriculture, for making construction material, for contaminated wastewater treatment, and also for carbon dioxide sequestration. This review can be useful to develop approaches for the remediation and environmental management of OFA. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Phytoremediation is an emerging remediation technology that utilizes plants and microbes to clean up contaminated air, soil, and water. Tropical and subtropical environments have an advantage in that long plant‐growing seasons and increased soil temperature can accelerate phytoremediation processes. Various contaminated sites in Hawaii have been addressed using this technology. In this article, work progress and advances of phytoremediation are briefly reviewed and exemplified with seven chemically contaminated sites in Hawaii. The investigations were performed for one or more of the following remediation needs: explosive residues, hydrocarbons, pesticide residues, soil stabilization, and slaughterhouse wastewater. In this unique article, studies of testing of over 100 plant species for remediation are reviewed and documented. The general trend leads one to consider that salt‐ and/or drought‐tolerant plants can bear other potential stress‐inducing conditions. © 2004 Wiley Periodicals, Inc.  相似文献   

11.
The U.S. Department of Energy's (US DOE's) environmental challenges include remediation of the Hanford Site in Washington State. The site's legacy from nuclear weapons “production” activities includes approximately 80 square miles of contaminated groundwater, containing radioactive and other hazardous substances at levels above drinking water standards. In 1998, the U.S. General Accounting Office (US GAO), the auditing arm of Congress, concluded that groundwater remediation at Hanford should be integrated with a comprehensive understanding of the “vadose zone,” the soil region between the ground surface and groundwater. The US DOE's Richland Operations Office adjusted its program in response, and groundwater/vadose‐zone efforts at Hanford have continued to develop since that time. Hanford provides an example of how a federal remediation program can be influenced by reviews from the US GAO and other organizations, including the US DOE itself. © 2008 Wiley Periodicals, Inc.  相似文献   

12.
Thermal remediation of contaminated soils and groundwater by injection of hot air and steam using large‐diameter auger in situ soil mixing effectively remediates volatile and semivolatile organic compounds. This technology removes large amounts of contamination during the early treatment stages, but extended treatment times are needed to achieve high removal percentages. Combining thermal treatment with another technology that can be injected and mixed into the soil, and that continues to operate after removal of the drilling equipment, improves removal efficiency, and reduces cost. Using field‐determined pseudo first‐order removal rates, the cost of the combined remediation of chlorinated volatile organic compounds (CVOCs) by thermal treatment followed by reductive dechlorination by iron powder has been estimated as 57 percent of the cost of thermal treatment alone. This analysis was applied to a case‐study remediation of 48,455 cubic yards, which confirmed the cost estimate of the combined approach and showed over 99.8 percent removal of trichloroethene and other chlorinated VOCs. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
Sustainable remediation is the elimination and/or control of unacceptable risks in a safe and timely manner while optimizing the environmental, social, and economic value of the work. Forthcoming International Organization for Standardization (ISO) Standard on Sustainable Remediation will allow countries without the capacity to develop their own guidance to benefit from work done over the past decade by various groups around the world. The ISO standard has progressed through the committee draft (ISO/CD 18504) and draft international standard (ISO/DIS 18504) stages. The risk‐based approach to managing the legacy of historically contaminated soil and groundwater has been incorporated into policy, legislation, and practice around the world. It helps determine the need for remediation and the end point of such remediation. Remediation begins with an options appraisal that short lists strategies that could deliver the required reduction in risk. A remediation strategy comprises one or more remediation technologies that will deliver the safe and timely elimination and/or control of unacceptable risks. The ISO standard will help assessors identify the most sustainable among the shortlisted, valid alternative remediation strategies. Practitioners presenting case studies claiming to constitute sustainable remediation should now report how they have aligned their work with the new standard. Indicators are used to compare alternative remediation strategies. The simplest metric that allows a characteristic to act as an indicator should be chosen. Weightings indicators can become a contested exercise and should only be undertaken where there is a clear desire for it by stakeholders and a clear need for it in identifying a preferred strategy. The simplest means of ranking alternative remediation strategies should be adopted.  相似文献   

14.
Barriers to redevelopment of contaminated lands have led to vacant or underutilized sites termed “brown fields.” These barriers fall into six categories: regulatory, technical/scientific, legal/liability, financial, urbanplanning, and communications. The lack of protection to innocent parties, such as developers and lenders, and the lack of guidance for applying sitespecific and risk-based remediation approaches are two key barriers to redevelopment. This article presents guiding principles for redeveloping brownfields and recommends best practices toward overcoming existing barriers to such redevelopment. Success stories of redeveloped contaminated industrial sites are provided to illuminate the effectiveness of the best practices approach.  相似文献   

15.
Electrical resistance heating (ERH) is a common method of remediation for volatile organic compounds in unconsolidated soils, both above and below the water table. In the past eight years, ERH has been used to successfully treat 10 or more contaminated sedimentary bedrock sites. Sedimentary bedrock treatment has recently expanded to greater depths and into karst limestone environments. This article describes the implementation issues for rock remediation and provides case studies of three sites remediated by ERH in Pennsylvania and Alabama. With proper design, the remediation of sedimentary bedrock can be completed as effectively as the remediation of overburden materials. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
杨进  郦和生  王岽  王彬 《化工环保》2021,41(2):140-145
CaO2具有很好的稳定性,可在水和土壤中逐步分解生成H2O2成为氧化反应的氧化剂,已作为H2O2的替代物用于环保领域的研究中.介绍了CaO2的作用机理,综述了CaO2用于处理含卤代物、染料、抗生素、苯系物等废水的研究进展,以及CaO2用于治理含石油烃、多环芳烃、苯系物和农药的污染土壤的研究进展.提出未来的研究方向:充分...  相似文献   

17.
Different points of view have emerged concerning how to best consider and address the largely unexamined ancillary environmental impacts, and more particularly the social and economic impacts, of remediation activities. These views are generally categorized as “green remediation” and “sustainable remediation.” This article dissects the commonalities and differences between “green” and “sustainable” remediation approaches. Several key obstacles to the broader implementation of sustainable remediation practices are identified. Similarities identified among the two concepts offer a common ground and areas of collaboration. The objective of this article is to support maturation of the remediation industry by addressing the opposition to and supporting the implementation of sustainable remediation practices, including offering recommendations for a path forward. ©2015 Wiley Periodicals, Inc.  相似文献   

18.
1,4‐Dioxane (14DX) is classified as a probable human carcinogen by the US Environmental Protection Agency (EPA), and it has toxic effects on the kidney and liver. EPA's Health Advisory Level (HAL) for 14DX is 0.35 micrograms per liter (μg/L). Accordingly, several states have lowered their drinking water advisory levels and site cleanup levels. The widespread occurrence of 14DX in contaminated groundwater has contributed to a growing demand for remediation services. Treating 14DX is a challenge due to its very low Henry's law constant, low sorption potential, and strong ether linkages. The primary solution for 14DX remediation has been various forms of advanced oxidation processes (AOP), namely pump and treat followed by ex situ treatment with catalyzed ultraviolet light oxidation or ozone‐peroxidation. Many of the available advanced oxidation systems are complex, requiring careful monitoring and maintenance to adjust for variable source water and operating conditions. Synthetic media is a relatively new 14DX treatment technology that overcomes many of the operating challenges faced by existing technologies. AMBERSORB? 560 (AMBERSORB) has recently demonstrated the effective removal of 14DX over a wide range of concentrations and operating conditions, including those created by in situ thermal remediation. Consistent and reliable treatment down to sub‐0.3 μg/L levels differentiates synthetic media technology from other 14DX treatment technologies. AMBERSORB provides a solution to the problem of “stranded capital” by offering a 14DX treatment system capable of meeting regulatory standards today and in the foreseeable future. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Hydrogen Release Compound (HRC®) is a simple, passive, low-cost, and long-term option for the anaerobic bioremediation of chlorinated hydrocarbons (CHs) via reductive dehalogenation. Applications to the remediation of other compounds, such as MTBE and perchlorate, that are anaerobically degradable by other reductive mechanisms, are in progress. HRC should be viewed as a tool for the acceleration of natural attenuation at sites that would otherwise require high levels of capital investment and operating expense. HRC is a proprietary, food-quality, polylactate ester that, upon being deposited into the subsurface, slowly degrades to lactic acid. Lactic acid is then metabolized to hydrogen, which in turn drives the reductive dechlorination of CHs. This has been demonstrated effectively in the laboratory and in the field. HRC can be manufactured as a moderately flowable, injectable material, or as a thicker, implantable hard gel, to facilitate localized treatment and passive barrier designs. HRC is best utilized for the remediation of dissolved phase plumes and the associated hydrophobically sorbed contaminant. The use of HRC is not appropriate for use on free-phase DNAPL unless the total mass to be remediated is within the scope of economic feasibility in comparison to alternative treatments. Evidence suggests there is competition between reductive dehalogenators and methanogens in which the methanogens compete for the use of hydrogen in the conversion of carbon dioxide to methane. Some researchers believe that a low concentration of hydrogen favors the reductive dehalogenators and starves out the methanogens. The objective, therefore, is to keep hydrogen concentrations low. The time-release feature of HRC, which is based on the hydrolysis rate of lactic acid from the ester and the subsequent lag time to hydrogen conversion, facilitates this objective. HRC, therefore, becomes a passive form of accelerated natural attenuation, in contrast to the more capital-and management-intensive alternatives now available. Laboratory and field results are presented, the latter expanding on the first uses of HRC by various members of the engineering and consulting firm community. © 1999 John Wiley & Sons, Inc.  相似文献   

20.
The capping of waste management units and contaminated soils is receiving increasing attention as a low-cost method for hazardous chemical site remediation. Capping is used to prevent further groundwater pollution by existing waste management units and contaminated soils through limiting the moisture that enters the wastes. In principle, for wastes located above the water table, the construction of an impermeable cap can prevent leaching of the wastes (leachate generation) and groundwater pollution. In practice, appropriately designed and constructed RCRA caps can provide for only short-term prevention of groundwater pollution. Alternative approaches are available for capping of wastes that can be effective in preventing moisture from entering the wastes and concomitant groundwater pollution. These approaches recognize the inability of the typical RCRA cap to keep wastes dry for as long as waste constituents will be a threat and, most importantly, provide the necessary funds to effectively address all plausible worst-case scenario failures that could occur at a capped waste management unit or contaminated soil area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号