首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
With limited assessment, leachate treatment of a specified landfill is considered to be a significant source of greenhouse gas (GHG) emissions. In our study, the cumulative GHG emitted from the storage ponds and process configurations that manage fresh or aged landfill leachate were investigated. Our results showed that strong CH4 emissions were observed from the fresh leachate storage pond, with the fluxes values (2219–26,489 mg C m?2 h?1) extremely higher than those of N2O (0.028–0.41 mg N m?2 h?1). In contrast, the emission values for both CH4 and N2O were low for the aged leachate tank. N2O emissions became dominant once the leachate entered the treatment plants of both systems, accounting for 8–12% of the removal of N-species gases. Per capita, the N2O emission based on both leachate treatment systems was estimated to be 7.99 g N2O–N capita?1 yr?1. An increase of 80% in N2O emissions was observed when the bioreactor pH decreased by approximately 1 pH unit. The vast majority of carbon was removed in the form of CO2, with a small portion as CH4 (<0.3%) during both treatment processes. The cumulative GHG emissions for fresh leachate storage ponds, fresh leachate treatment system and aged leachate treatment system were 19.10, 10.62 and 3.63 Gg CO2 eq yr?1, respectively, for a total that could be transformed to 9.09 kg CO2 eq capita?1 yr?1.  相似文献   

3.
Environmental impacts and gaseous emissions associated to home and industrial composting of the source-separated organic fraction of municipal solid waste have been evaluated using the environmental tool of life cycle assessment (LCA). Experimental data of both scenarios were experimentally collected. The functional unit used was one ton of organic waste. Ammonia, methane and nitrous oxide released from home composting (HC) were more than five times higher than those of industrial composting (IC) but the latter involved within 2 and 53 times more consumption or generation of transport, energy, water, infrastructures, waste and Volatile Organic Compounds (VOCs) emissions than HC. Therefore, results indicated that IC was more impacting than HC for four of the impact categories considered (abiotic depletion, ozone layer depletion, photochemical oxidation and cumulative energy demand) and less impacting for the other three (acidification, eutrophication and global warming). Production of composting bin and gaseous emissions are the main responsible for the HC impacts, whereas for IC the main contributions come from collection and transportation of organic waste, electricity consumption, dumped waste and VOCs emission. These results suggest that HC may be an interesting alternative or complement to IC in low density areas of population.  相似文献   

4.
5.
A laboratory-scale bioreactor was used to investigate the influence of dairy manure addition (as an inoculum and a carbon source) on the biological and thermal kinetics of the composting process of tomato plant residues-wood shavings mixture. Urea was added (as a nitrogen source) to correct the initial C:N ratio to 30:1 and the initial moisture content was also adjusted to 60%. The result of this study indicated that manure addition to the tomato residues-wood shavings mixture is a good source of macro and micronutrients required for supporting the composting microorganisms. Manure addition increased the rate of temperature increase and the duration of maximum temperature and reduced the lag and the peak time, all of which resulted in a significant reduction in the retention time. However, thermophilic temperature (> or = 40 degrees Celsius) was only achieved with 30%, 40% and 50% manure addition for 3, 7 and 9h. Total carbon reductions were in the range of 9.4-10.8% and TKN reductions were in the range of 3.4-6.0%. Neither the nitrogen nor the moisture content were limiting factors as the C:N ratio remained in the range of 26:1 to 28:1 and the moisture content remained within the optimum range of 58-61%. The maximum temperature of each mixture correlated with the reduction of total carbon, but carbon availability was a limiting factor in these experiments. In order to attain and sustain a thermophilic phase during the composting process, the addition of a readily available carbon source to the tomato should be investigated and carbon type (carbohydrates, proteins and fats) should be taken into account.  相似文献   

6.
This paper covers the Flemish legislative tools concerning the management of bottom ash, fly ash and APC residue from municipal waste incinerators, with respect to their contamination with heavy metals. The situation in Flanders is compared to the one in the Walloon region, The Netherlands, Germany and France. Waste management in the countries considered differs on the level of available management options, of leaching tests and of limit values. To make an indicative comparison of leaching tests and limit values in the different countries, leaching tests were carried out on bottom ash and fly ash, and the results are compared to the relevant limit values for recycling and landfilling of the different countries. The comparison of legislations as well as the leaching results show that discrepancies in waste management between the different regions and countries exist. Recently, European limit values for landfilling became available. European legislation on recycling, however, has not been developed and urgently needs to be considered and drafted as the market for recycling can be expanding rapidly.  相似文献   

7.
Since the indiscriminate disposal of pig slurry can cause not only air pollution and bad odours but also nutrient pollution of ground waters and superficial waters, composting is sometimes used as one environmentally acceptable method for recycling pig manure. The aim of this study was to evaluate the effect of composting pig slurry on its sanitation (evaluated by ecotoxicity assays and pathogen content determination), as well as to determine the effect of a carbon-rich bulking agent (wood shavings, WS) and the starting C/N ratio on the changes undergone by different chemical (volatile organic matter, C and N fractions) and microbiological (microbial biomass C, ATP, dehydrogenase activity, urease, protease, phosphatase, and beta-glucosidase activities) parameters during composting. Pig slurry mixed with bulking agent (P+WS) and the solid faction separated from it, both with (PSF+WS) and without bulking agent (PSF), were composted for 13 weeks. Samples for analysis were taken from composting piles at the start of the process and at 3, 6, 9, and 13 weeks after the beginning of composting. The total organic carbon, water soluble C and ammonium content decreased with composting, while Kjeldahl N and nitrate content increased. The nitrification process in the PSF+WS pile was more intense than in the PSF or P+WS composting piles. The pathogen content decreased with composting, as did phytotoxic compounds, while the germination index increased with compost age. Piles with bulking agent showed higher values of basal respiration, microbial biomass carbon, ATP and hydrolase activities during the composting process than piles without bulking agent.  相似文献   

8.
In this applied study, the effects of short‐term storage at 22°C, 6°C, and ?25°C on the numbers of microorganisms enumerated were examined with soils collected from a petrochemical contaminated soil containing multiple contaminants including phenol, polycyclic aromatic hydrocarbons, and petroleum hydrocarbons. Short term storage of soils at refrigerator temperature did not significantly change the number of microorganisms compared to those in the fresh soil (0 days of storage); however, at ?25°C there was a slight decrease in the phenol utilizers and total viable count (TVC). Long‐term storage caused a significant decrease in the number of phenol utilizers in the petrochemical‐contaminated soil samples. Chemical dispersing agents were used in an attempt to increase the extraction of microorganisms from naphthalene contaminated soil which were predominantly clay soils. These did not significantly change the enumeration of naphthalene utilizers or TVC. While these results are not unexpected from current research and knowledge of microbial community succession in laboratory environments, the results from the applied nature of this study confirm that it is best practice to keep soil samples designated for bacterial enumeration for the shortest possible time, and not longer than 1–2 weeks, and at refrigerated temperature (6°C) in preference to room (22°C) or deep freezer (?18°C) temperatures.  相似文献   

9.
Tannery waste is categorized as toxic and hazardous in Malaysia due to its high content of Cr (in excess of 500 mg/kg) and other heavy metals. Heavy metals, when in high enough concentrations, have the potential to be both phytotoxic and zootoxic. Heavy metals are found as contaminants in tannery sludge. This investigation aimed to identify the fate of chromium, cadmium, copper, lead, and zinc concentrations in tannery sludge throughout a 50-day composting cycle. The results of this study showed a general increase in the removal of Cr, Cd, Pb, and to a much smaller extent Zn and Cu, manifested by a decrease in their overall concentrations within the solid fraction of the final product (the decreases were likely the result of leaching). Furthermore, in using a sequential extraction method for sludge composting at different phases of treatment, a large proportion of the heavy metals were found to be associated to the residual fraction (70-80%) and fractions more resistant to extraction, X-NaOH, X-EDTA, X-HNO3 (12-29%). Less than 2% of the metals were bound to bioavailable fractions X-(KNO3+H2O).  相似文献   

10.
11.
The very large extent of subsurface and groundwater contamination with toxic organic compounds has prompted research on a number of bioremedial processes. The justification of this research has been to achieve lower overall remedial costs than are incurred by currently existing technologies. Laboratory studies are often undertaken with the notion that a new set of process conditions can reduce reagent consumption or the time for treatment by a significant factor with an attendant reduction in overall remediation costs. Research programs are initiated on the basis of these simple premises. Our work has shown that many research projects have been undertaken for the wrong reasons and that experimental effort has often not been directed toward large-scale implementation. A preliminary process analysis has been shown to be a very valuable component of any research and development program on bioremedial and other innovative technologies. As described in this article, the analysis (1) identifies the critical engineering and cost parameters and (2) provides guidance to the research program in the design of experiments and the collection of data. The methodology is also useful in the review of proposed new technologies and treatment equipment. The article includes an example of a process analysis for an actual development project directed toward the remediation of solids contaminated with chlorinated hydrocarbons to illustrate the benefits and the power of the technique.  相似文献   

12.
Direct aerobic biodegradation of vinyl chloride (VC) offers a remedial solution for persistent vinyl chloride plumes that are not amenable to the anaerobic process of reductive dechlorination because of either prevailing geochemical conditions or the absence of active Dehalococcoides ethenogenes. However, tools are needed to evaluate and optimize aerobic VC bioremediation. This article describes the development and testing of two techniques—a microbiological tool and a molecular tool—for this purpose. Both methods are based on detection of bacteria that can use vinyl chloride and ethene as growth substrates in the presence of oxygen. The microbiological tool is an activity assay that indicates whether bacteria capable of degrading ethene under aerobic conditions are present in a groundwater sample. This activity assay gave positive results in the area of active VC degradation of an aerobic VC bioremediation test site. A rapid semiquantitative genetic assay was also developed. This molecular tool, based on polymerase chain reaction (PCR) detection of a gene involved in the metabolism of both ethene and VC, revealed the presence of potential VC degraders in an enrichment culture and site groundwater. These tools could provide a basis for judging the potential of aerobic VC degradation by ethenotrophs at other sites in addition to offering a mechanism for treatment monitoring and system optimization. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
Proving the viability of in situ bioremediation technologies and gathering data for its full‐scale implementation typically involves collecting multiple rounds of data and often completing microcosm studies. Collecting these data is cumbersome, time‐consuming, costly, and typically difficult to scale. A new method of completing microcosm studies in situ using an amendable sampling device deployed and incubated in groundwater monitoring wells provides actionable data to expedite site cleanup. The device, referred to as a Bio‐Trap® sampler, is designed to collect actively colonizing microbes and dissolved organic compounds from groundwater for analysis using conventional analytical techniques and advanced diagnostic tools that can answer very specific design and viability questions relating to bioremediation. Key data that can be provided by in situ microcosm studies using Bio‐Trap® samplers include definitively demonstrating contaminant destruction by using compound‐specific isotope analysis and providing data on the mechanism of the degradation by identifying the responsible microbes. Three case studies are presented that demonstrate the combined flexibility of Bio‐Trap® samplers and advanced site diagnostics. The applications include demonstrating natural attenuation of dissolved chlorinated solvents, demonstrating natural attenuation of dissolved petroleum compounds, and using multiple Bio‐Trap® samplers to comparatively assess the viability of bioaugmentation at a chlorinated solvent release site. At each of these sites, the in situ microcosm studies quickly and cost‐effectively answered key design and viability questions, allowing for regulatory approval and successful full‐scale implementation. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH4+, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW<1kDa) predominated in the leachate, accounting for 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu2+ was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48h with leachate in the ratio of 5g of sample per 50ml of leachate. Cu2+ uptake by the raw soil was approximately 4.60microg/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11microg/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu2+.  相似文献   

15.
A 4-year field trial was established in eastern Sweden to evaluate the effects of organic waste on soil chemical and microbiological variables. A simple crop rotation with barley and oats was treated with either compost from household waste, biogas residue from household waste, anaerobically treated sewage sludge, pig manure, cow manure or mineral fertilizer. All fertilizers were amended in rates corresponding to 100kgNha(-1)year(-1). The effects of the different types of organic waste were evaluated by subjecting soil samples, taken each autumn 4 weeks after harvest, to an extensive set of soil chemical (pH, Org-C, Tot-N, Tot-P, Tot-S, P-AL, P-Olsen, K-AL, and some metals) and microbiological (B-resp, SIR, microSIR active and dormant microorganisms, PDA, microPDA, PAO, Alk-P and N-min) analyses. Results show that compost increased pH, and that compost as well as sewage sludge increased plant available phosphorus; however, the chemical analysis showed few clear trends over the 4 years and few clear relations to plant yield or soil quality. Biogas residues increased substrate induced respiration (SIR) and, compared to the untreated control amendment of biogas residues as well as compost, led to a higher proportion of active microorganisms. In addition, biogas residues increased potential ammonia oxidation rate (PAO), nitrogen mineralization capacity (N-min) as well as the specific growth rate constant of denitrifiers (microPDA). Despite rather large concentrations of heavy metals in some of the waste products, no negative effects could be seen on either chemical or microbiological soil properties. Changes in soil microbial properties appeared to occur more rapidly than most chemical properties. This suggests that soil microbial processes can function as more sensitive indicators of short-term changes in soil properties due to amendment of organic wastes.  相似文献   

16.
In order to obtain 85% recycling, several procedures on Automotive Shredder Residue (ASR) could be implemented, such as advanced metal and polymer recovery, mechanical recycling, pyrolysis, the direct use of ASR in the cement industry, and/or the direct use of ASR as a secondary raw material. However, many of these recovery options appear to be limited, due to the possible low acceptability of ASR based products on the market. The recovery of bottom ash and slag after an ASR thermal treatment is an option that is not usually considered in most countries (e.g. Italy) due to the excessive amount of contaminants, especially metals. The purpose of this paper is to provide information on the characteristics of ASR and its full-scale incineration residues. Experiments have been carried out, in two different experimental campaigns, in a full-scale tyre incineration plant specifically modified to treat ASR waste.Detailed analysis of ASR samples and combustion residues were carried out and compared with literature data. On the basis of the analytical results, the slag and bottom ash from the combustion process have been classified as non-hazardous wastes, according to the EU waste acceptance criteria (WAC), and therefore after further tests could be used in future in the construction industry. It has also been concluded that ASR bottom ash (EWC – European Waste Catalogue – code 19 01 12) could be landfilled in SNRHW (stabilized non-reactive hazardous waste) cells or used as raw material for road construction, with or without further treatment for the removal of heavy metals. In the case of fly ash from boiler or Air Pollution Control (APC) residues, it has been found that the Cd, Pb and Zn concentrations exceeded regulatory leaching test limits therefore their removal, or a stabilization process, would be essential prior to landfilling the use of these residues as construction material.  相似文献   

17.
GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from ?290 kg CO2 e (glass) to ?19 111 kg CO2 e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO2 e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.  相似文献   

18.
陈勇  王清森  张浩凡 《化工环保》2017,37(3):335-339
采用FeSO_4和Na_2S作为还原剂处理铬污染紫色土壤,研究了还原过程中铬的含量及形态的变化。实验结果表明:当FeSO_4加入量为1.5%(w,下同)时,浸出Cr(Ⅵ)含量由(1 745.13±27.93)mg/kg降至(17.65±2.28)mg/kg,浸出总铬含量由(1 768.83±57.24)mg/kg降至(69.79±8.61)mg/kg,铬形态由水溶+碳酸盐结合态转变到较稳定的铁锰结合态;当Na_2S加入量为0.4%时,浸出Cr(Ⅵ)含量由(1 745.13±27.93)mg/kg降至(25.50±0.12)mg/kg,浸出总铬含量由(1 768.83±57.24)mg/kg降至(410.87±12.83)mg/kg,铬形态由水溶+碳酸盐结合态转变到铁锰结合态和有机结合态。  相似文献   

19.
20.
HFCs (hydrofluorocarbons) emerged as alternative refrigerants after the production of chlorofluorocarbons was banned and hydrochlorofluorocarbons were phased out, under the Montreal Protocol on Substances that Deplete the Ozone Layer. However, because the Kyoto Protocol considered HFCs as greenhouse gases, and their impact on climate change has been increasing, major developed countries have been strengthening existing regulations on the use of HFCs as refrigerants. South Korea has also passed various legislations related to refrigerant management. However, reports indicate that implementation of these regulations has been ineffective, due to the absence of a specific system for managing the production, use, and disposal phases of refrigerants. To identify and resolve these issues, this study investigates the current state of refrigerant management in South Korea for those three phases. Refrigerant management policies are compared between different legislatures, using the examples of the European Union, United States, and Japan. Based on the findings, five types of measures are suggested to reduce the production and consumption of refrigerants, and to improve refrigerant management regulations in ways that are most appropriate to the South Korean context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号