首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Accumulation of nitrite in denitrifying barriers when phosphate is limiting   总被引:2,自引:0,他引:2  
Permeable in situ denitrifying barriers can remove nitrate from groundwater. Barriers may be constructed by filling an excavated area with a porous mixture of sand, fine gravel, and substrate or by the injection of a nonaqueous phase substrate into an aquifer. The substrate stimulates the development of a denitrifying microbial community by providing an electron donor. The objective of this study was to determine the ability of denitrifying barriers to function under low-phosphate conditions. Sand columns injected with a soybean oil emulsion were used as laboratory models of denitrifying barriers. When a natural groundwater containing 17 mg l(-1) nitrate-N and 0.009 mg l(-1) phosphate-P was pumped through the columns, only a small amount of nitrate was removed from the water and, in some effluent fractions, 52% to 88% of the influent nitrate had converted to nitrite. Nitrite also accumulated when the phosphate concentration of the groundwater was increased to 0.040 or 0.080 mg l(-1) phosphate-P. Only when a 0.160 mg l(-1) phosphate-P supplement was added to the groundwater was there a loss of nitrate without a large accumulation of nitrite. The addition of solid calcium phosphate or rock phosphate to the sand columns was found to provide adequate phosphate for denitrification in short-term studies. These studies point out the need to ensure that adequate phosphate is present in denitrifying barriers especially when such barriers are used beneath phosphate-binding soils.  相似文献   

2.
Atrazine is one of the most frequently used herbicides. This usage coupled with its mobility and recalcitrant nature in deeper soils and aquifers makes it a frequently encountered groundwater contaminant. We formed biobarriers in sand filled columns by coating the sand with soybean oil; after which, we inoculated the barriers with a consortium of atrazine-degrading microorganisms and evaluated the ability of the barriers to remove atrazine from a simulated groundwater containing 1 mg L(-1) atrazine. The soybean oil provided a carbon rich and nitrogen poor substrate to the microbial consortium. Under these nitrogen-limiting conditions it was hypothesized that bacteria capable of using atrazine as a source of nitrogen would remove atrazine from the flowing water. Our hypothesis proved correct and the biobarriers were effective at removing atrazine when the nitrogen content of the influent water was low. Levels of atrazine in the biobarrier effluents declined with time and by the 24th week of the study no detectable atrazine was present (limit of detection<0.005 mg L(-1)). Larger amounts of atrazine were also removed by the biobarriers; when biobarriers were fed 16.3 mg L(-1) atrazine 97% was degraded. When nitrate (5 mg L(-1) N), an alternate source of nitrogen, was added to the influent water the atrazine removal efficiency of the barriers was reduced by almost 60%. This result supports the hypothesis that atrazine was degraded as a source of nitrogen. Poisoning of the biobarriers with mercury chloride resulted in an immediate and large increase in the amount of atrazine in the barrier effluents confirming that biological activity and not abiotic factors were responsible for most of the atrazine degradation. The presence of hydroxyatrazine in the barrier effluents indicated that dehalogenation was one of the pathways of atrazine degradation. Permeable barriers might be formed in-situ by the injection of innocuous vegetable oil emulsions into an aquifer or sandy soil and used to remove atrazine from a contaminated groundwater or to protect groundwater from an atrazine spill.  相似文献   

3.
This study was conducted to evaluate the potential applicability of an in situ biological reactive barrier system to treat nitrate-contaminated bank filtrate. The reactive barrier consisted of sulfur granules as an electron donor and autotrophic sulfur-oxidizing bacteria as a biological component. Limestone was also used to provide alkalinity. The results showed that the autotrophic sulfur oxidizers were successfully colonized on the surfaces of the sulfur particles and removed nitrate from synthetic bank filtrate. The sulfur-oxidizing activity continuously increased with time and then was maintained or slightly decreased after five days of column operation. Maximum nitrate removal efficiency and sulfur oxidation rate were observed at near neutral pH. Over 90% of the initial nitrate dissolved in synthetic bank filtrate was removed in all columns tested with some nitrite accumulation. However, nitrite accumulation was observed mainly during the initial operation period, and the concentration markedly diminished with time. The nitrite concentration in effluent was less than 2 mg-N/l after 12 days of column operation. When influent nitrate concentrations were 30, 40, and 60 mg-N/l and sulfur content in column was 75%, half-order autotrophic denitrification reaction rate constants were 31.73 x 10(-3), 33.3 x 10(-3), and 36.4 x 10(-3) mg(1/2)/l(1/2)min, respectively. Our data on the nitrate distribution profile along the column suggest that an appropriate wall thickness of a reactive barrier for autotrophic denitrification may be 30 cm when influent nitrate concentration is less than 60 mg-N/l.  相似文献   

4.
In this study, CO2 was bubbled into Fe0-contained solution to create an acidic environment favorable to reduction of aqueous nitrate under various water qualities. Results showed that nitrate of 30 mg l(-1) could be removed from solutions almost completely within 30 min under the conditions of 2 g Fe0 l(-1) and CO2 bubbling flow rate of 200 ml min(-1). It was observed from the Fe0/CO2 system that one mole of nitrate reduced by Fe0 led to the formation of 6.6 mol of ferrous ions. The removal of nitrate increases with increasing Fe0 dosage, however, the removal makes no difference as the Fe0 is applied at a relatively higher dosage. In the system with various water qualities, nitrate removal was inhibited significantly in the presence of humic acid. Calcium ions strongly retard nitrate removal, whereas chloride ions promote the reduction of nitrate in a significant way. Sodium ions impose only slight inhibitive effect on nitrate removal. Water molecule in the studied system can be of significance due to its competitive capability of electrons released from Fe0.  相似文献   

5.
Choi JH  Kim YH  Choi SJ 《Chemosphere》2007,67(8):1551-1557
The reductive dechlorination and biodegradation of 2,4,6-trichlorophenol (2,4,6-TCP) was investigated in a laboratory-scale sequential barrier system consisting of a chemical and biological reactive barrier. Palladium coated iron (Pd/Fe) was used as a reactive barrier medium for the chemical degradation of 2,4,6-TCP, and a sand column seeded with anaerobic microbes was used as a biobarrier following the chemical reactive barrier in this study. Only phenol was detected in the effluent from the Pd/Fe column reactor, indicating that the complete dechlorination of 2,4,6-TCP was achieved. The residence time of 30.2-21.2h was required for the complete dechlorination of 2,4,6-TCP of 100 mg l(-1) in the column reactor. The surface area-normalized rate constant (k(SA)) is 3.84 (+/-0.48)x10(-5)lm(-2)h(-1). The reaction rate in the column tests was one order of magnitude slower than that in the batch test. In the operation of the biobarrier, about 100 microM of phenol was completely removed with a residence time of 7-8d. Consequently, the dechlorination prior to biodegradation turns out to increase the overall treatability. Moreover, the sequential permeable reactive barriers, consisting of iron barrier and biobarrier, could be recommended for groundwater contaminated with toxic organic compounds such as chlorophenols.  相似文献   

6.
Lee ES  Woo NC  Schwartz FW  Lee BS  Lee KC  Woo MH  Kim JH  Kim HK 《Chemosphere》2008,71(5):902-910
Release and spreading of permanganate (MnO(4)(-)) in the well-based controlled-release potassium permanganate (KMnO(4)) barrier system (CRP system) was investigated by conducting column release tests, model simulations, soil oxidant demand (SOD) analyses, and pilot-scale flow-tank experiments. A large flow tank (L x W x D=8m x 4m x 3m) was constructed. Pilot-scale CRP pellets (OD x L=0.05 m x1.5m; n=110) were manufactured by mixing approximately 198 kg of KMnO(4) powders with paraffin wax and silica sands in cylindrical moulds. The CRP system (L x W x D=3m x 4m x 1.5m) comprising 110 delivery wells in three discrete barriers was constructed in the flow tank. Natural sands (organic carbon content=0.18%; SOD=3.7-11 g MnO(4)(-)kg(-1)) were used as porous media. Column release tests and model simulations indicated that the CRP system could continuously release MnO(4)(-) over several years, with slowly decreasing release rates of 2.5 kg d(-1) (day one), 109 g d(-1) (day 100), 58 g d(-1) (year one), 22 g d(-1) (year five), and 12 g d(-1) (year 10). Mean MnO(4)(-) concentrations within the CRP system ranged from 0.5 to 6 mg l(-1) during the 42 days of testing period. The continuously releasing MnO(4)(-) was gradually removed by SOD limiting the length of MnO(4)(-) zone in the porous media. These data suggested that the CRP system could create persistent and confined oxidation zone in the subsurface. Through development of advanced tools for describing agent transport and facilitating lateral agent spreading, the CRP system could provide new approach for long-term in situ treatment of contaminant plumes in groundwater.  相似文献   

7.
Water quality data from 55 monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. During the drought month of October, water table levels were three feet (0.9 m) lower compared with several months earlier under predrought climate conditions. Detection frequencies of nitrate (> 0.1 mg/l), orthophosphates (> 0.1 mg/l), chlorides (> MCL), and sulfates (> MCL) all increased during drought. Orthophosphate level was higher during drought. Largest increases in concentration were nitrate under both agriculture lands and in septic tank areas. An increase in ammonium-nitrogen was only detected in the septic tank area. The study showed that stressors such as nitrate and total salts could potentially become a health or environmental problem during drought.  相似文献   

8.
Shallow groundwater quality on dairy farms with irrigated forage crops   总被引:5,自引:0,他引:5  
California's dairies are the largest confined animal industry in the state. A major portion of these dairies, which have an average herd size of nearly 1000 animal units, are located in low-relief valleys and basins. Large amounts of liquid manure are generated and stored in these dairies. In the semi-arid climate, liquid manure is frequently applied via flood or furrow irrigation to forage crops that are grown almost year-round. Little is known about the impact of manure management practices on water quality of the extensive alluvial aquifers underlying these basins. The objective of this work is to assess nitrate and salt leaching to shallow groundwater in a relatively vulnerable hydrogeologic region and to quantify the impact from individual sources on dairies. The complex array of potential point and nonpoint sources was divided into three major source areas representing farm management units: (1) manure water lagoons (ponds); (2) feedlot or exercise yard, dry manure, and feed storage areas (corrals); and (3) manure irrigated forage fields (fields). An extensive shallow groundwater-monitoring network (44 wells) was installed in five representative dairy operations in the northeastern San Joaquin Valley, CA. Water quality (electrical conductivity, nitrate-nitrogen, total Kjehldahl nitrogen) was observed over a 4-year period. Nitrate-N, reduced nitrogen and electrical conductivity (EC, salinity) were subject to large spatial and temporal variability. The range of observed nitrate-N and salinity levels was similar on all five dairies. Average shallow groundwater nitrate-N concentrations within the dairies were 64 mg/l compared to 24 mg/l in shallow wells immediately upgradient of these dairies. Average EC levels were 1.9 mS/cm within the dairies and 0.8 mS/cm immediately upgradient. Within the dairies, nitrate-N levels did not significantly vary across dairy management units. However, EC levels were significantly higher in corral and pond areas (2.3 mS/cm) than in field areas (1.6 mS/cm) indicating leaching from those management units. Pond leaching was further inferred from the presence of reduced nitrogen in three of four wells located immediately downgradient of pond berms. The estimated minimum average annual groundwater nitrate-N and salt loading from manure-treated forage fields were 280 and 4300 kg/ha, respectively. Leaching rates for ponds are estimated to be on the order of 0.8 m/year, at least locally. Since manure-treated fields represent by far the largest land area of the dairy, proper nutrient management will be a key to protecting groundwater quality in dairy regions overlying alluvial aquifers.  相似文献   

9.
针对受低浓度氨氮污染的地下水,实验筛选组合了不同的反应介质,利用串联的多介质填充柱模拟渗透反应格栅,通过物理吸附及生物硝化-反硝化作用来实现氮的去除。结果表明,在进水氨氮浓度为10 mg/L、流速为0.5 m/d的条件下,模拟柱对氨氮的去除率达到98%以上,且不会出现亚硝酸盐及硝酸盐浓度的升高。水体经过释氧柱后溶解氧由2mg/L升高至10 mg/L以上,表明释氧材料可提供硝化细菌所需的好氧环境。好氧柱中填充易于生物挂膜的生物陶粒及对氨氮有较强吸附能力的沸石,二者联用通过生物硝化-物理吸附协同作用实现对氨氮的去除,其中生物作用实现的氨氮去除量占总去除量的50%左右。后续厌氧反应柱填充海绵铁除氧并利用松树皮颗粒作为碳源,创造反硝化菌生长条件,硝酸盐氮浓度可由10 mg/L降低至5 mg/L以下,实现对好氧反应阶段所产生的硝酸盐的去除,避免了地下水的二次污染。  相似文献   

10.
Su C  Puls RW 《Chemosphere》2007,67(8):1653-1662
Recent research has shown that carbonaceous solid materials and zerovalent iron (Fe(0)) may potentially be used as media in permeable reactive barriers (PRBs) to degrade groundwater nitrate via heterotrophic denitrification in the solid carbon system, and via abiotic reduction and autotrophic denitrification in the Fe(0) system. Questions arise as whether the more expensive Fe(0) is more effective than the less expensive carbonaceous solid materials for groundwater nitrate remediation, and whether there is any synergistic effect of mixing the two different types of materials. We carried out batch tests to study the nature and rates of removal of added nitrate in the suspensions of single, binary, and ternary systems of cotton burr compost, Peerless Fe(0), and a sediment low in organic carbon. Cotton burr compost acted as both organic carbon source and supporting material for the growth of indigenous denitrifiers. Batch tests showed that cotton burr compost alone removed added nitrate at a greater rate than did Peerless Fe(0) alone on an equal mass basis with a pseudo-first-order rate constant k=0.0830+/-0.0031 h(-1) for cotton burr compost and a k=0.00223+/-0.00022 h(-1) for Peerless Fe(0); cotton burr compost also removed added nitrate at a faster rate than did cotton burr compost mixed with Peerless Fe(0) and/or the sediment. Furthermore, there was no substantial accumulation of ammonium ions in the cotton burr compost system, in contrast to the systems containing Peerless Fe(0) in which ammonium ions persisted as major products of nitrate reduction. It is concluded that cotton burr compost alone may be used as an excellent denitrification medium in a PRB for groundwater nitrate removal. Further study is needed to evaluate performance of its field applications.  相似文献   

11.
A survey of groundwater and stream water quality was undertaken in a stock farming area where livestock wastewater infiltrates into sandy unsaturated zones and saturated bedrock aquifers containing fractures. To determine the degree of contamination and track the effect of livestock wastewater on groundwater and stream water quality, the population of indicator bacteria (total coliforms, fecal coliforms, fecal streptococci, Staphylococcus spp., and sulfite-reducing clostridia) together with relevant physicochemical parameters were monitored along the wastewater flow-pathways over a 19-month period. The stream water was severely contaminated with livestock wastewater. Nearly all physicochemical and bacteriological parameters in the stream water were much greater than those in the groundwater. Nitrate-N concentrations ranged from 10.0 to 20.0 mg l(-1) in boreholes located downstream (site C) from the livestock waste disposal site, while those in the background borehole (W2) were below 1.0 mg l(-1). Densities of indicator bacteria in boreholes at site C were two or three orders of magnitude higher than those in W2 borehole. In boreholes located downstream from the livestock waste disposal site, the concentration of ammonium-N, nitrate-N, and pollution indicator bacteria increased as groundwater level rose due to infiltration of rainwater. In W2 borehole, however, physicochemical parameters and the number of pollution indicator bacteria had no correlation with the groundwater level. Collectively, these results suggest that the deep aquifers were heavily contaminated with infiltrated livestock wastewater, which consequently must be adequately treated to minimize groundwater pollution.  相似文献   

12.
Understanding the process of mass transfer from source zones of aquifers contaminated with organic chemicals in the form of dense non-aqueous phase liquids (DNAPL) is of importance in site management and remediation. A series of intermediate-scale tank experiments was conducted to examine the influence of aquifer heterogeneity on DNAPL mass transfer contributing to dissolved mass emission from source zone into groundwater under natural flow before and after remediation. A Tetrachloroethylene (PCE) spill was performed into six source zone models of increasing heterogeneity, and both the spatial distribution of the dissolution behavior and the net effluent mass flux were examined. Experimentally created initial PCE entrapment architecture resulting from the PCE migration was largely influenced by the coarser sand lenses and the PCE occupied between 30 and 60% of the model aquifer depth. The presence of DNAPL had no apparent effect on the bulk hydraulic conductivity of the porous media. Up to 71% of PCE mass in each of the tested source zone was removed during a series of surfactant flushes, with associated induced PCE mobilization responsible for increasing vertical DNAPL distributions. Effluent mass flux due to water dissolution was also found to increase progressively due to the increase in NAPL-water contact area even though the PCE mass was reduced. Doubling of local groundwater flow velocities showed negligible rate-limited effects at the scale of these experiments. Thus, mass transfer behavior was directly controlled by the morphology of DNAPL within each source zone. Effluent mass flux values were normalized by the up-gradient DNAPL distributions. For the suite of aquifer heterogeneities and all remedial stages, normalized flux values fell within a narrow band with mean of 0.39 and showed insensitivity to average source zone saturations.  相似文献   

13.
The use of calcite (CaCO3) as a substrate for a permeable reactive barrier (PRB) for removing fluoride from contaminated groundwater is proposed and is illustrated by application to groundwater contaminated by spent potliner leachate (SPL), a waste derived from the aluminium smelting process. The paper focuses on two issues in the implementation of calcite permeable reactive barriers for remediating fluoride contaminated water: the impact of the groundwater chemical matrix and CO2 addition on fluoride removal. Column tests comparing pure NaF solutions, synthetic SPL solutions, and actual SPL leachate indicate that the complex chemical matrix of the SPL leachate can impact fluoride removal significantly. For SPL contaminant mixtures, fluoride removal is initially less than expected from idealized, pure, solutions. However, with time, the effect of other contaminants on fluoride removal diminishes. Column tests also show that pH control is important for optimizing fluoride removal with the mass removed increasing with decreasing pH. Barrier pH can be regulated by CO2 addition with the point of injection being critical for optimising the remediation performance. Experimental and model results show that approximately 99% of 2300 mg/L fluoride can be removed when CO2 is injected directly into the barrier. This can be compared to approximately 30-50% removal when the influent solution is equilibrated with atmospheric CO2 before contact with calcite.  相似文献   

14.
Encapsulation technology is being investigated as a method for controlling pH in situ at contaminated groundwater sites where pH may limit remediation of organic contaminants. This study examined the effectiveness of using KH2PO4 buffer encapsulated in a pH-sensitive coating to neutralize pH in laboratory sand columns (1.5-1) under a simulated groundwater flow rate and characterized the pattern of capsule release in the flow-through system. Denitrification was used in the columns to increase the pH of the pore water. Each of three columns was equipped with three miniature mesh wells to allow contact of the buffer with column pore water, but capsules (15 g) were inserted into only one column (amended). The two other columns served as amendment (no buffer) and abiotic (no denitrification) controls. Oxidation-reduction potential, dissolved organic and inorganic carbon, NH4+, NO3- +NO2-, PO(4)3-, and pH were measured in the influent, two side ports, and effluent of the columns over time. Near complete conversion of 80 mg N/1 of nitrate and 152 mg/l of ethanol per day resulted in a mean pH increase from 6.2 to 8.2 in the amendment control column. The amended column maintained the target pH of 7.0 +/- 0.2 for 4 weeks until the capsules began to be depleted, after which time the pH slowly started to increase. The capsules exhibited pulses of buffer release, and were effectively dissolved after 7.5 weeks of operation. Base-neutralizing capacity contributed by the encapsulated buffer over the entire study period, calculated as cation equivalents, was 120 mM compared to 8 mM without buffer. This study demonstrates the potential for this technology to mediate pH changes and provides the framework for future studies in the laboratory and in the field, in which pH is controlled in order to enhance organic contaminant remediation by pH-sensitive systems.  相似文献   

15.
T Viraraghavan  K Slough 《Chemosphere》1999,39(9):1487-1496
Batch kinetic and isotherm studies were carried out to determine the adsorptive characteristics of peat and bentonite mixtures for pentachlorophenol, and to examine the hydraulic conductivity of peat-bentonite mixtures to determine if they are applicable for use as cutoff barriers. Batch kinetic studies showed that over 90% of PCP was removed from water spiked with approximately 1 mg/l of PCP using a peat-bentonite (5%) mixture. The equilibrium time was 8 hours. The optimum pH range for adsorption of PCP by the peat-bentonite mixture was found to be 3-3.5. Batch isotherm studies showed that the adsorption of PCP by the peat-bentonite mixture from aqueous solution was best described by the Freundlich isotherm equation. Batch adsorption studies using various ratios of bentonite in the mixture showed that the adsorption of PCP decreased linearly with increased amount of bentonite in the mixture, indicating that adsorption of PCP by the peat moss portion of the mixture was the dominant process. The inverse of the hydraulic conductivity was found to increase exponentially with an increase in the bentonite content of the mixture over the range studied. The minimum hydraulic conductivity observed was 3.3 x 10(-7) cm/s for a 50% peat-50% bentonite mixture. Peat-bentonite mixtures can be used to successfully remove PCP from aqueous media and can be used effectively as a barrier to attenuate the migration of PCP through soil and groundwater systems.  相似文献   

16.
Su C  Puls RW 《Chemosphere》2007,66(1):91-98
We conducted batch tests on the nature of removal of added nitrate in cotton burr compost, mulch compost, and sphagnum peat that may be potentially used in a permeable reactive barrier (PRB) for groundwater nitrate remediation. A rigorous steam autoclaving protocol (121 degrees C for 2h each day for three consecutive days) for the cotton burr compost and autoclaving of all labware and the nitrate working solutions resulted in drastically different results compared to the non-autoclaved treatment. In the non-autoclaved cotton burr compost, added nitrate at 20 mg N l(-1) decreased rapidly and was not detected after 3d; whereas, the autoclaved cotton burr compost showed persistent nitrate above 15.5 mg N l(-1) even after 10d, which is comparable with nitrate concentrations above 17.6 mg N l(-1) in a treatment using NaN(3) at 1000 mg l(-1). Dewaxed cotton burr compost showed decreased nitrate reduction compared to the pristine cotton burr compost. No nitrate reduction was detected in the dewaxed sphagnum peat. It is concluded that nitrate removal in the organic media is controlled by microbiologically mediated processes. The use of readily available cotton burr and mulch composts may offer a cost-effective method of nitrate removal from contaminated groundwater.  相似文献   

17.
In situ chemical oxidation (ISCO) schemes using MnO4- have been effective in destroying chlorinated organic solvents dissolved in ground water. Laboratory experiments and field pilot tests reveal that the precipitation of Mn oxide, one of the reaction products, causes a reduction of permeability, which can lead to flow bypassing and inefficiency of the scheme. Without a solution to this problem of plugging, it is difficult to remove DNAPL from the subsurface completely. In a companion paper, we showed with batch experiments that Mn oxide can be dissolved rapidly with certain organic acids. This study utilizes 2-D flow-tank experiments to examine the possibility of nearly complete DNAPL removal by ISCO with MnO4-, when organic acids are used to remove Mn oxide. The experiments were conducted in a small 2-D glass flow tank containing a lenticular silica-sand medium. Blue-dyed trichloroethylene (TCE) provided residual, the perched and pooled DNAPL. KMnO4 at 200 mg/l was flushed through the DNAPL horizontally. Once plugging reduced permeability and prevented further delivery of the oxidant, citric or oxalic acids were pumped into the flow tank to dissolve the Mn oxide precipitates. Organic ligands removed the Mn oxide precipitates relatively quickly, and permitted another cycle of MnO4- flooding. Cycles of MnO4-/acid flooding continued until all of the visible DNAPL was removed. The experiments were monitored with chemical analysis and visualization. A mass-balance calculation indicated that by the end of the experiments, all the DNAPL was removed. The results show also how heterogeneity adds complexity to initial redistribution of DNAPL, and to the efficiency of the chemical flooding.  相似文献   

18.
Batt AL  Snow DD  Aga DS 《Chemosphere》2006,64(11):1963-1971
Samples from six private wells formerly used as sources for drinking water by the residents of Washington County (Weiser, Idaho) were collected to assess the impact of a nearby confined animal feeding operation (CAFO) on the quality of the local groundwater. All six samples were found contaminated by two veterinary antimicrobials, sulfamethazine (at concentrations from 0.076 to 0.22 μg/l) and sulfadimethoxine (at concentrations from 0.046 to 0.068 μg/l). These groundwater samples also contained elevated concentrations of nitrate and ammonium. Three of the sampled wells have nitrate levels that exceeded the maximum contaminant level set by the US Environmental Protection Agency for drinking water, with nitrate concentration as high as 39.1 mg/l. All but one well showed nitrate, which instead contained ammonium at 1.22 mg/l. Analysis of the nitrate and ammonium in these samples by isotopic ratio mass spectrometry indicated δ15N characteristic of an animal or human waste source. Results from this study underscore the role of CAFO as an important source of antibiotic contamination of groundwater.  相似文献   

19.
Jeong JY  Kim HK  Kim JH  Park JY 《Chemosphere》2012,89(2):172-178
The present study investigates the performance of the zero valent iron (ZVI, Fe0) packed bed bipolar electrolytic cell for nitrate removal. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous column experiments for the simulated groundwater (initial nitrate and electrical conductivity of about 30 mg L−1 as N and 300 μS cm−1, respectively), above 99% of nitrate was removed at the applied potential of 600 V with the main anode placed on the bottom of reactor. The influx nitrate was converted to ammonia (20% to maximum 60%) and nitrite (always less than 0.5 mg L−1 as N in the effluent). The optimum packing ratio (v/v) of silica sand to ZVI was found to be 1:1-2:1. Magnetite was observed on the surface of the used ZVI as corrosion product. The reduction at the lower part of the reactor in acidic condition and adsorption at the upper part of the reactor in alkaline condition are the major mechanism of nitrate removal.  相似文献   

20.
A simplified method is used to assess the microbial activity of subsoils and soils across a broad geographic scale. Acetate was selected because it is a major intermediate in catabolic biochemical pathways. In order to get minimal disturbance, only a small amount of tritium labelled acetate and water is added to the subsoil material. After an incubation time, the subsoil material is separated from the water by centrifugation and the formed tritium labelled water is separated from the remaining acetate by evaporation. The data of 128 locations in the Netherlands were plotted in a soil map and were also compared with the depth, dry weight, electric conductivity, pH and nitrate concentration. The peat areas consisted of limed meadows with a high groundwater level whereas the sand areas often showed deeper groundwater levels and a lower pH. The subsoils at the groundwater table of the peat areas, which are in contact with soil air, showed a higher mineralization rate compared with the surface soils in our study. In contrast, the mineralization rate of the subsoil at the groundwater table of sandy soils showed on average a factor 30 lower rate. Nevertheless, the self purification capacity of the subsoil can be vital under weather conditions where the surface soil becomes less active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号