共查询到20条相似文献,搜索用时 0 毫秒
1.
Coca, once grown for local consumption in the Andes, is now produced for external markets, often in areas with armed conflict. Internationally financed eradication campaigns force traffickers and growers to constantly relocate, making drug-related activities a principal cause of forest loss. The impact on biodiversity is known only in general terms, and this article presents the first regional analysis to identify areas of special concern, using bird data as proxy. The aim of conserving all species may be significantly constrained in the Santa Marta and Perijá mountains, Darién, some parts of the Central Andes in Colombia, and between the middle Mara?ón and middle Huallaga valleys in Peru. Solutions to the problem must address the root causes: international drug markets, long-lasting armed conflict, and lack of alternative income for the rural poor. 相似文献
2.
Scott NA Tate KR Giltrap DJ Tattersall Smith C Wilde RH Newsome PF Davis MR 《Environmental pollution (Barking, Essex : 1987)》2002,116(Z1):S167-S186
We designed a soil carbon monitoring system for New Zealand using country-specific land use and soil carbon information. The system pre-stratifies the country by soil type, climate, and land use. Soils were placed in six IPCC soil categories; Podzols were added as they are widespread throughout New Zealand. Temperature was stratified into two categories, each spanning 7 degrees C. Moisture categories were based on water balance, and included five categories. Temperature and moisture stratification was based on the USDA Soil Classification system. Land use (10 categories) was based on 1980s survey data. Overall, 39 combinations of these three factors (cells) described 93% of the New Zealand landscape. Geo-referenced soil carbon data (carbon concentration and bulk density) were used to quantify average soil carbon for each of the 39 cells. Aggregating the polygons gave an estimated 1990 soil carbon baseline of 1152+/-44, 1439+/-73, and 1602+/-167 Mt C (mean+/-S.D.) for the 0-0.1, 0.1-0.3, and 0.3-1.0 m depth increments (not including forest floor carbon). The system described could also be used to quantify equilibrium changes in soil C associated with land-use change if land use is updated periodically. 相似文献
3.
Causes and consequences of a tropical forest gold rush in the Guiana Shield, South America 总被引:1,自引:0,他引:1
Statistical and spatial analyses of both historical time series and remotely sensed data show a link between the spatial distribution and growth of gold production across the Guiana Shield in northeast Amazonia. Results indicate that an exponential rise in production across an expanding area is primarily a delayed response to the 1971-1978 market flotation of international gold prices. The subsequent 10-fold (2-fold) average nominal (real) price increase has provided a compelling economic incentive to mass exploitation of lower-grade gold deposits. The ground-based and remotely sensed distributions of mining activity are strongly attached to these deposits that dominate the region's gold geology. The presence of these gold-bearing formations in conservation and sustainable timber zones has sparked social conflict and environmental degradation across the region. Left unmanaged, more than a quarter-million square-kilometer area of tropical forest zoned for protection and sustainable management could ultimately be compromised by the price-driven boom in gold mining through poorly integrated resource use planning, lack of reclamation effort, and control of illegal operations. Serious public health issues propagated through the unregulated mining environment further erode the financial benefits achieved through gold extraction. This study demonstrates in part how international economic policies successfully stabilizing more conspicuous centers of the global economy can have unintended but profound environmental and social impacts on remote commodity frontiers. 相似文献
4.
Modeling coupled interactions of carbon,water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: model description 总被引:1,自引:0,他引:1
A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems. 相似文献
5.
Friedlingstein P Müller JF Brasseur GP 《Environmental pollution (Barking, Essex : 1987)》1994,83(1-2):143-147
The biosphere is a major pool in the global carbon cycle; its response to climatic change is therefore of great importance. We developed a 5 degrees x 5 degrees longitude-latitude resolution model of the biosphere in which the global distributions of the major biospheric variables, i.e. the vegetation types and the main carbon pools and fluxes, are determined from climatic variables. We defined nine major broad vegetation types: perennial ice, desert and semi-desert, tundra, coniferous forest, temperate deciduous forest, grassland and shrubland, savannah, seasonal tropical forest and evergreen tropical forest. Their geographical repartition is parameterized using correlations between observed vegetation type, precipitation and biotemperature distributions. The model computes as a function of climate and vegetation type, the variables related to the continental biospheric carbon cycle, i.e. the carbon pools such as the phytomass, the litter and the soil organic carbon; and carbon fluxes such as net primary production, litter production and heterotrophic respiration. The modeled present-day biosphere is in good agreement with observation. The model is used to investigate the response of the terrestrial biosphere to climatic changes as predicted by different General Circulation Models (GCM). In particular, the impact on the biosphere of climatic conditions corresponding to the last glacial climate (LGM), 18 000 years ago, is investigated. Comparison with results from present-day climate simulations shows the high sensitivity of the geographical distribution of vegetation types and carbon content as well as biospheric trace gases emissions to climatic changes. The general trend for LGM compared to the present is an increase in low density vegetation types (tundra, desert, grassland) to the detriment of forested areas, in tropical as well as in other regions. Consequently, the biospheric activity (carbon fluxes and trace gases emissions) was reduced. 相似文献
6.
Dipnarayan Ganguly Gurmeet Singh Purvaja Ramachandran Arumughan Paneer Selvam Kakolee Banerjee Ramesh Ramachandran 《Ambio》2017,46(6):667-679
Net ecosystem metabolism and subsequent changes in environmental variables were studied seasonally in the seagrass-dominated Palk Bay, located along the southeast coast of India. The results showed that although the water column was typically net heterotrophic, the ecosystem as a whole displayed autotrophic characteristics. The mean net community production from the seagrass meadows was 99.31 ± 45.13 mM C m?2 d?1, while the P/R ratio varied between 1.49 and 1.56. Oxygen produced through in situ photosynthesis, exhibited higher dependence over dissolved CO2 and available light. Apportionment of carbon stores in biomass indicated that nearly three-fourths were available belowground compared to aboveground. However, the sediment horizon accumulated nearly 40 times more carbon than live biomass. The carbon storage capacities of the sediments and seagrass biomass were comparable with the global mean for seagrass meadows. The results of this study highlight the major role of seagrass meadows in modification of seawater chemistry. Though the seagrass meadows of Palk Bay are increasingly subject to human impacts, with coupled regulatory and management efforts focused on improved water quality and habitat conservation, these key coastal ecosystems will continue to be valuable for climate change mitigation, considering their vital role in C dynamics and interactions with the overlying water column. 相似文献
7.
Despite the important role that tropical forests play in human existence, their depletion, especially in the developing world, continue relentlessly. Agriculture has been cited as the major cause of this depletion. This paper discusses two main theoretical underpinnings for the role of agriculture in tropical deforestation. First, the forest biomass as input in agricultural production, and second, the competition between agriculture and forestry underlined by their relative marginal benefits. These are supported by empirical evidence from selected countries in Africa and South America. The paper suggests a need to find a win-win situation to control the spate of tropical deforestation. This may imply improved technologies in the agriculture sector in the developing world, which would lead both to increased production in the agriculture sector, and would also help control the use of tropical forest as an input in agriculture production. 相似文献
8.
9.
The authors used a global High Resolution Biosphere Model (HRBM), consisting of a biome model and a carbon cycle model, to estimate the changes of carbon storage in the major pools of the terrestrial biosphere from 18 000 BP to present. The climate change data to drive the biosphere for 18 000 BP were derived from an Atmospheric General Circulation Model. Using the AGCM anomalies interpolated to a 0.5 degrees grid, the HRBM data base of the present climate was recalculated for 18 000 BP. The most important processes which influenced the carbon storage include (1) climate-induced changes in biospheric processes and vegetation distribution, (2) the CO(2) fertilization effect, (3) the inundation of lowland areas resulting from the sea level rise of 100 m. Two scenarios were investigated. The first scenario, which ignored the CO(2) fertilization effect, led to total carbon losses from the terrestrial biosphere of -460 x 10(9) t. Scenario 2, which assumed that the model formulation of the CO(2) fertilization effect as used for preindustrial to present could be extrapolated to the glacial 200 microl litre(-1) (ppmv, parts per million per volume), gave a carbon fixation in the terrestrial biosphere of +213 x 10(9) t. The two scenarios were compared with CO(2) concentration data and isotopic ratios from air in ice cores. The results of Scenario 1 are not in agreement with the data. Scenario 2 gives realistic delta(13)C shifts in the atmosphere but the biospheric carbon storage at the end of the glacial period seems too large. The authors suggest that the low atmospheric CO(2) concentration may have favoured the C-4 plants in ice age vegetation types. As a consequence the influence of the low CO(2) concentration was eventually reduced and the glacial carbon storage in vegetation, litter, and soil was increased. 相似文献
10.
Volker W. J. H. Kirchhoff 《Environmental science and pollution research international》1996,3(4):210-212
Increasing carbon monoxide and ozone concentrations have been observed in the lower troposphere of the Brazilian Amazon region in recent years (1989–1995). Carbon monoxide and ozone have been measured in the region continuously; from observations at a single site and many sporadic field missions, there is a clear indication that the chemical activity in the troposphere is growing, with increasing concentrations especially during the dry season. On the other hand, the most recent deforestation assessment by the Brazilian Government, performed by the Instituto Nacional de Pesquisas Espaciais (INPE) using Landsat data, shows yearly rates rising from the 11,130 km2 year?1 minimum of the 1990/91 survey, to 13,786 km2 year?1 for the 1991/92 period, and 14,896 km2 year?1 for the period 1992/94. It is argued that the increase in deforestation/biomass burning activities in “Amazonia” have produced larger carbon monoxide and ozone concentrations in the lower atmosphere. 相似文献
11.
de Koning F Olschewski R Veldkamp E Benítez P López-Ulloa M Schlichter T de Urquiza M 《Ambio》2005,34(3):224-229
Costs of reforestation projects determine their competitiveness with alternative measures to mitigate rising atmospheric CO2 concentrations. We quantify carbon sequestration in above-ground biomass and soils of plantation forests and secondary forests in two countries in South America-Ecuador and Argentina-and calculate costs of temporary carbon sequestration. Costs per temporary certified emission reduction unit vary between 0.1 and 2.7 USD Mg(-1) CO2 and mainly depend on opportunity costs, site suitability, discount rates, and certification costs. In Ecuador, secondary forests are a feasible and cost-efficient alternative, whereas in Argentina reforestation on highly suitable land is relatively cheap. Our results can be used to design cost-effective sink projects and to negotiate fair carbon prices for landowners. 相似文献
12.
Gabriel J. Reyes-Rodríguez Adriana Gioda Olga L. Mayol-Bracero Jeff Collett 《Atmospheric environment (Oxford, England : 1994)》2009,43(27):4171-4177
Chemical characterization to determine the organic and nitrogen fractions was performed on cloud water samples collected in a mountaintop site in Puerto Rico. Cloud water samples showed average concentrations of 1.09 mg L?1 of total organic carbon (TOC), of 0.85 mg L?1 for dissolved organic carbon (DOC) and of and 1.25 mg L?1 for total nitrogen (TN). Concentrations of organic nitrogen (ON) changed with the origin of the air mass. Changes in their concentrations were observed during periods under the influence of African dust (AD). The ON/TN ratios were 0.26 for the clean and 0.35 for the AD periods. Average concentrations of all these species were similar to those found in remote environments with no anthropogenic contribution. In the AD period, for cloud water the concentrations of TOC were 4 times higher and TN were 3 times higher than during periods of clean air masses associated with the trade winds. These results suggest that a significant fraction of TOC and TN in cloud and rainwater is associated to airborne particulate matter present in dust. Functional groups were identified using proton nuclear magnetic resonance (1H NMR) spectroscopy. This characterization led to the conclusion that water-soluble organic compounds in these samples are mainly aliphatic oxygenated compounds, with a small amount of aromatics. The ion chromatography results showed that the ionic species were predominantly of marine origin, for air masses with and without African dust influence, with cloud water concentrations of NO3? and NH4+ much lower than from polluted areas in the US. An increase of such species as SO42?, Cl?, Mg2+, K+ and Ca2+ was seen when air masses originated from northwest Africa. The changes in the chemical composition and physical properties of clouds associated with these different types of aerosol particles could affect on cloud formation and processes. 相似文献
13.
Estimates of carbon fluxes and turnover in ecosystems are key elements in the understanding of climate change and in predicting the accumulation of trace elements in the biosphere. In this paper we present estimates of carbon fluxes and turnover times for five terrestrial ecosystems using a modeling approach. Multiple criteria of acceptance were used to parameterize the model, thus incorporating large amounts of multi-faceted empirical data in the simulations in a standardized manner. Mean turnover times of carbon were found to be rather similar between systems with a few exceptions, even though the size of both the pools and the fluxes varied substantially. Depending on the route of the carbon through the ecosystem, turnover times varied from less than one year to more than one hundred, which may be of importance when considering trace element transport and retention. The parameterization method was useful both in the estimation of unknown parameters, and to identify variability in carbon turnover in the selected ecosystems. 相似文献
14.
Understanding how private landholders make deforestation decisions is of paramount importance for conservation. Behavioural frameworks from the social sciences have a lot to offer researchers and practitioners, yet these insights remain underutilised in describing what drives landholders’ deforestation intentions under important political, social, and management contexts. Using survey data of private landholders in Queensland, Australia, we compare the ability of two popular behavioural models to predict future deforestation intentions, and propose a more integrated behavioural model of deforestation intentions. We found that the integrated model outperformed other models, revealing the importance of threat perceptions, attitudes, and social norms for predicting landholders’ deforestation intentions. Social capital, policy uncertainty, and years of experience are important contextual moderators of these psychological factors. We conclude with recommendations for promoting behaviour change in this deforestation hotspot and highlight how others can adopt similar approaches to illuminate more proximate drivers of environmental behaviours in other contexts.Supplementary informationThe online version of this article (10.1007/s13280-020-01491-w) contains supplementary material, which is available to authorized users. 相似文献
15.
Hydrocarbon and elemental carbon signatures in a tropical wetland: biogeochemical evidence of forest fire and vegetation changes 总被引:2,自引:0,他引:2
Evidence of changing vegetation in the tropical wetland (Rawa Danau, west Java, Indonesia) over the past 7428 years is illustrated by elemental (soot) carbon (EC) and n-alkane composition of sedimentary geolipids. In this study, vegetation changes and relevant controlling factors (e.g. forest fire and climate change) were documented on a decadal to centennial scale. The n-alkane composition that changes with depth might record changes in sources of organic matter (OM) in the wetland. The presence of EC (0.01–0.24% of organic carbon: OC) during late (0–1700 cal. year BP) and mid (3500–4500 cal. year BP) Holocene (at depths 0–50 cm, and 160–210 cm) indicated that large-scale forest fires severely affected the tropical vegetation. The hydrocarbon indices (CPI: carbon preference index, MCN: mean carbon number, and HVI: hydrocarbon vegetation index) significantly correlated with one another while a comparison of EC profile with the profiles of hydrocarbon indices indicated that n-alkane composition of the geolipid in lake sediment could record signatures of changes in catchment vegetation. Forest fire and vegetation changes might be related to regional climatic shifts relating to ENSO activity as well as being influenced by human influences. 相似文献
16.
Ortiz-Ulloa Juvenal Alejandro Abril-González Mónica Fernanda Pelaez-Samaniego Manuel Raúl Zalamea-Piedra Teresa Silvana 《Environmental science and pollution research international》2021,28(15):18741-18753
Environmental Science and Pollution Research - Banana is one of the most important agricultural products of Ecuador. It relies on intensive monoculture cropping systems with a large volume of... 相似文献
17.
Frans-Jan W. Parmentier Torben R. Christensen Søren Rysgaard Jørgen Bendtsen Ronnie N. Glud Brent Else Jacobus van Huissteden Torsten Sachs Jorien E. Vonk Mikael K. Sejr 《Ambio》2017,46(1):53-69
The current downturn of the arctic cryosphere, such as the strong loss of sea ice, melting of ice sheets and glaciers, and permafrost thaw, affects the marine and terrestrial carbon cycles in numerous interconnected ways. Nonetheless, processes in the ocean and on land have been too often considered in isolation while it has become increasingly clear that the two environments are strongly connected: Sea ice decline is one of the main causes of the rapid warming of the Arctic, and the flow of carbon from rivers into the Arctic Ocean affects marine processes and the air–sea exchange of CO2. This review, therefore, provides an overview of the current state of knowledge of the arctic terrestrial and marine carbon cycle, connections in between, and how this complex system is affected by climate change and a declining cryosphere. Ultimately, better knowledge of biogeochemical processes combined with improved model representations of ocean–land interactions are essential to accurately predict the development of arctic ecosystems and associated climate feedbacks. 相似文献
18.
Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest
Yiping Zhang Zhenghong Tan Qinghai Song Guirui Yu Xiaomin Sun 《Atmospheric environment (Oxford, England : 1994)》2010,44(32):3886-3893
Tropical rain forests play important roles in the global carbon cycle. We report a six-year eddy covariance carbon flux campaign in a primary tropical seasonal rain forest in southwest China. An unexpected seasonal pattern of net ecosystem carbon exchange was detected, with carbon lost during the rainy season and stored in the dry season. Strong seasonality of ecosystem respiration was suggested to primarily account for this seasonal pattern. The annual net uptake of CO2 by the forest varied from 0.98 to 2.35 metric tons of carbon per hectare between 2003 and 2008. 6-year averaged sink strength was 1.68 metric tons of carbon per hectare. 相似文献
19.
Amazonian deforestation rates vary regionally, and ebb and flow according to macroeconomic policy and local social factors. We used remote sensing and field interviews to investigate deforestation patterns and drivers at a Peruvian frontier during 1986-1991, when rural credit and guaranteed markets were available; and 1991-1997, when structural adjustment measures were imposed. The highest rate of clearing (1.5% gross) was observed along roads during 1986-1991. Roadside deforestation slowed in 1991-1997 (0.7% gross) and extensive regrowth yielded a net increase in forest cover (0.5%). Deforestation along rivers was relatively constant. Riverside farms today retain more land in both crops and forest than do roadside farms where pasture and successional growth predominate. Long-term residents maintain more forest on their farms than do recent colonists, but proximity to urban markets is the strongest predictor of forest cover. Future credit programs must reflect spatial patterns of development and ecological vulnerability, and support the recuperation of fallow lands and secondary forest. 相似文献
20.
A distinct seasonal variation in the enzyme activities and carbon dioxide evolution in soil, with a maximum in summer, was observed in soil treated with carbaryl and in control soil. There was no significant difference in the rate of enzyme activity between 0 and 10 cm and 10 and 20 cm depth of soil. Carbaryl insecticide applied at a normal agricultural dose did not have any inhibitory effect on soil enzyme activity, or on the rate of CO(2) evolution. However, the cellulase activity was greater in the surface soil of the control plot than in the treated plot. 相似文献