首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The aim of this study was to assess the toxicity reduction of wastewaster after treatment with fly ash. Fly ash is a waste material which is formed as a result of coal burning in power plants, but has the potential to adsorb heavy metal ions. The present study examined the adsorption capacity of fly ash to adsorb Pb2+, Cu2+, and Zn2+ from waste water under different conditions of contact time, pH, and temperature. Uptake of metal ions by fly ash generally rose with increasing pH. At lower temperatures the uptake of heavy metal adsorption were enhanced. Significant reduction in Pb2+ (79%), Cu2+ (53%), and Zn2+ (80%) content was found after treatment with fly ash of waste water treatment. Using the microtox test toxicity of the effluent was reduced by 75% due to removal of Pb2+ ion by the fly ash. Data indicated that fly ash generated by power plants may be used beneficially to remove metals from waste water.  相似文献   

2.
粉煤灰对土壤和作物生长的影响   总被引:3,自引:0,他引:3  
粉煤灰施用量控制在60~600t/hm2,不会造成土壤、粮食的污染,且能改善土壤的物理、化学和生物学性质.有利于养分的转化。粉煤厂磁化后15~7.5t/hm2的施用量即可达到最佳的改上增产效果。本文在分析粉煤灰埋化性质的基础上,讨论了粉煤灰对土壤和作物生长的影响,同时也提出了降低粉煤灰中有害物质对土壤和作物不利影响的农用技术。  相似文献   

3.
• Washed MSWI fly ash was used as partial cement or sand substitute. • Sand replacing is beneficial for strength, while cement replacement reduces strength. • Cementing efficiency factor and mortar pore structure explain the strength results. • Health risk assessment was conducted for MSWI fly ash blended cement mortar. • CR and HI contributed by different exposures and heavy metals were analyzed. The strength of cement substituted mortar decreases with the increase in fly ash amount, whereas the strength increases when the fly ash is blended as sand substitute. A mortar with highest strength (compressive strength= 30.2 Mpa; flexural strength= 7.0 Mpa) was obtained when the sand replacement ratio was 0.75%. The k value (cementing efficiency) of fly ash varied between 0.36 and 0.15 for the fly ash fraction in binder between 5% and 25%. The k values of fly ash used for sand replacement were all significantly above that used for cement substitution. The macropores assigned to the gaps between particles decreased when the fly ash was used as sand replacement, providing an explanation for the strength enhancement. The waste-extraction procedure (toxicity-sulphuric acid and nitric acid method (HJ/T 299-2007)) was used to evaluate metal leaching, indicating the reuse possibility of fly ash blended mortar. For the mortar with the mass ratio of fly ash to binder of 0.5%, the carcinogenic risks (CR) and non-carcinogenic hazard quotient (HQ) in sensitive scenario for blended mortar utilization were 9.66 × 10-7 and 0.06, respectively; these results were both lower than the threshold values, showing an acceptable health risk. The CR (9.89 × 10-5) and HQ (3.89) of the non-sensitive scenario for fly ash treatment exceeded the acceptable threshold values, indicating health risks to onsite workers. The main contributor to the carcinogenic and non-carcinogenic risk is Cr and Cd, respectively. The CR and HQ from inhalation was the main route of heavy metal exposure.  相似文献   

4.
以钛酸丁酯为原料,以粉煤灰微珠为载体,采用溶胶-凝胶法制备了TiO2/粉煤灰光催化剂.负载于粉煤灰表面的TiO2平均粒径约为7nm,晶型为锐钛矿型,该催化剂在太阳光下降解初始浓度为10mg·l-1的甲基橙,经6h,甲基橙的降解率可达98.9%,将其应用于实际样品的测定,经3h降解率可达96.1%,显示出优越的光催化降解性能.  相似文献   

5.
Soil heavy metal contamination is a major health issue. Chemical immobilization of toxic metals is a promising technique to solve this issue. In this study, soil was sampled from a copper mining-polluted area in eastern China. Coal fly ash and straw were applied to soil samples at 5 % w/w ratio and 2 % w/w ratio, and incubated for 6 weeks. The CaCl2-extractable Cu, Cd and Zn, phytoavailability and soil microbial activity were measured. The results showed that coal fly ash, straw and the mixture of coal fly ash and straw decreased CaCl2-extractable metals. Coal fly ash or the mixture of the two amendments are therefore efficient metal stabilizers.  相似文献   

6.
•Ultra-lightweight ceramsite is prepared with 80% fly ash. •SiO2, Al2O3, and flux contents significantly influence the performance of ceramsite. •The expansion of ceramsite is caused by the formation of a dense glaze and gas. •The bulk density of ultra-lightweight ceramsite is only 340 kg/m3. The disposal of fly ash has become a serious problem in China due to its rapid increase in volume in recent years. The most common method of fly ash disposal is solidification-stabilization-landfill, and the most common reuse is low-value-added building materials. A novel processing method for preparing ultra-lightweight ceramsite with fly ash was developed. The results show that the optimal parameters for preparation of ultra-lightweight ceramsite are as follows: mass ratio of fly ash:kaolin:diatomite= 80:15:5, preheating temperature of 800°C, preheating time of 5 min, sintering temperature of 1220°C, and sintering time of 10 min. The expansion agent is perlite, at 10 wt.% addition. Finally, a ceramsite with bulk density of 340 kg/m3, particle density of 0.68 g/cm3, and cylinder compressive strength of 1.02 MPa was obtained. Because of its low density and high porosity, ultra-lightweight ceramsite has excellent thermal insulation performance, and its strength is generally low, so it is usually used in the production of thermal insulation concrete and its products. The formation of a liquid-phase component on the surface, and generation of a gas phase inside ceramsite during the sintering process, make it possible to control the production of the suitable liquid phase and gas in this system, resulting in an optimization of the expansion behavior and microstructure of ceramsite. These characteristics show the feasibility of industrial applications of fly ash for the production of ultra-lightweight ceramsite, which could not only produce economic benefits, but also conserve land resources and protect the environment.  相似文献   

7.
The leaching characteristics of heavy metals in products of cement stabilization of fly ash from a municipal solid waste incinerator were investigated in this paper. The stabilization of heavy metals such as Cd, Pb, Cu, and Zn in fly ash from such incinerators was examined through the national standard method in China based on the following factors: additive quantity of cement and Na2S, curing time, and pH of leaching liquor. The results showed that as more additives were used, less heavy metals were leached except for Pb, which is sensitive to pH of the leachate, and the worse effect was observed for Cd. The mass ratio of cement to fly ash = 10% is the most appropriate parameter according to the national standard method. When the hydration of cement was basically finished, stabilization of heavy metals did not vary after curing for 1 d. The mixtures of cement and fly ash had excellent adaptability to environmental pH. The pH of leachate was maintained at 7 when pH of leaching liquor varied from 3 to 11.  相似文献   

8.
Two inhibitors, triethanolamine (TEA) and monoethanolamine (MEA), were tested for their ability to prevent the de novo formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) on sinter plant fly ash. The amounts of both PCDDs and PCDFs, formed by thermal treatment of the fly ash, decreased when inhibitors were added. Up to 90% reduction of the PCDD/Fs formation was reached when 2 wt % monoethanolamine was mixed with fly ash. The temperatures tested, 325 and 400 °C, did not affect the inhibition activity. However, a longer reaction time, 4 h instead of 2 h, gave higher percentages of PCDD/Fs reduction. The laboratory results show that ethanolamines reduce the dioxins formation on sinter plant fly ash under various conditions of temperature and reaction time. Moreover, factory tests performed in parallel at a sinter plant are in good agreement with the laboratory experiments, thus confirming that the use of ethanolamine inhibitors is an appropriate technique for the prevention of dioxins emissions from sintering processes. Electronic Publication  相似文献   

9.
Fly ash is a hazardous byproduct of municipal solid wastes incineration (MSWI). An alkali activated blast furnace slag-based cementitious material was used to stabilize/solidify the fly ash at experimental level. The characteristics of the stabilized/solidified fly ash, including metal leachability, mineralogical characteristics and the distributions of metals in matrices, were tested by toxic characteristic leaching procedure (TCLP), X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) respectively. Continuous acid extraction was utilized to extract metal ions and characterize their leaching behavior. The stabilization/solidification procedure for MSWI fly ash demonstrates a strong fixing capacity for the metals by the formation of C-S-H phase, hydrated calcium aluminosilicate and ettringite. The stabilized/solidified fly ash shows a dense and homogeneous microstructure. Cr is mainly solidified in hydrated calcium aluminosilicate, C-S-H and ettringite phase through physical encapsulation, precipitation, adsorption or substitution mechanisms, and Pb is mainly solidified in C-S-H phase and absorbed in the Si-O structure.  相似文献   

10.
Catalytic pyrolysis of thermoplastics extracted from waste electrical and electronic equipment (WEEE) was investigated using various fly ash-derived catalysts. The catalysts were prepared from fly ash by a simple method that basically includes a mechanical treatment followed by an acid or a basic activation. The synthesized catalysts were characterized using various analytical techniques. The results showed that not treated fly ash (FA) is characterized by good crystallinity, which in turn is lowered by mechanical and chemical treatment (fly ash after mechanical and acid activation, FAMA) and suppressed almost entirely down to let fly ash become completely amorphous (fly ash after mechanical and basic activation FAMB). Simultaneously, the surface area resulted increased. Subsequently, FA, FAMB and FAMA were used in the pyrolysis of a WEEE plastic sample at 400°C and their performance were compared with thermal pyrolysis at the same temperature. The catalysts principally improve the light oil yield: from 59 wt.% with thermal pyrolysis to 83 wt.% using FAMB. The formation of styrene in the oil is also increased: from 243 mg/g with thermal pyrolysis to 453 mg/g using FAMB. As a result, FAMB proved to be the best catalyst, thus producing also the lowest and the highest amount of char and gas, respectively.
  相似文献   

11.
粉煤灰资源的农业利用   总被引:1,自引:0,他引:1  
本文根据粉煤灰农业利用的基础及国内外研究现状,阐述了粉煤灰农业利用现状,包括直接施用于农田、利用粉煤灰生产化肥、贮灰场覆土或不覆土造田和填坑造地等。并对粉煤灰农业利用的前景提出了一些看法。  相似文献   

12.
采用盆栽试验,通过添加粉煤灰和牛粪对煤矸石污染土壤进行改良,并研究了不同改良措施对大豆生长、光合特性和产量的影响。结果表明,添加粉煤灰0.07 kg.kg-1(T1)、添加牛粪0.07 kg.kg-1(T2)、添加粉煤灰和牛粪各0.07 kg.kg-1(T3)3种土壤改良措施对大豆的株高、叶面积和单株根瘤数均有显著影响,不同生育期株高、叶面积和单株根瘤数均表现为T3>T2>T1>CK。在花期和鼓粒期,3种土壤改良措施下大豆的叶绿素含量和光合速率均显著高于对照,且T3处理显著高于T2和T1。与对照相比,不同土壤改良措施对大豆的单株荚数、百粒重、单株粒重和产量均有显著影响,T3、T2和T1处理的大豆产量较对照分别提高68.47%、40.99%和30.63%。  相似文献   

13.
Five medicinal plants viz. Abelmoschatus moschatus Linn., Clitoria tematea L., Plumbagozeylanica L., Psorolea corylifolia L. and Withania sominifera L. were grown in a polypot experiment in five soils representing coal mine soil, coppermine soil, fly ash, skeletal soil and forest soil with and without mycorrhizal inoculations in a completely randomized block design. Dry matter yield and mycorrhizal root colonization of plants varied both in uninoculated and inoculated conditions. The forest soil rendered highest dry matter due to higher yield of A. moschatus, P. zeylanica and P corylifolia while fly ash showed lowest dry matter without any inoculants. P. cematea were best in coalmine soil and W. sominifera in copper mine soil without mycorrhizal inoculation. The mycorrhiza was found to enhance the dry matter yield. This contributed minimum 0.19% to maximum up to 422.0% in different soils as compared to uninoculated plants. The mycorrhizal dependency was noticed maximum in plants grown in fly ash followed by coal mine soil, copper mine soil, skeletal soil and forest soil. The mycorrhizal response was increased maximum in W. sominifera due to survival in fly ash after inoculation followed by P corylifolia and P cematea. Percent root colonization in inoculated plant was increased minimum of 1.10 fold to maximum of 12.0 folds in comparison to un-inoculated plants . The native mycorrhiza fungi were also observed to colonize 4.0 to 32.0% roots in plants understudy. This study suggests that mycorrhizal inoculation increased the dry matter yield of medicinal plants in all soils under study. It also helps in survival of W. sominifera in fly ash.  相似文献   

14.
HDTMAB改性粉煤灰对水体中磷的吸附特性   总被引:1,自引:0,他引:1  
制备了十六烷基三甲基溴化铵(HDTMAB)改性粉煤灰,研究了该改性粉煤灰对水体中磷的吸附特性,结果表明:①当HDTMAB负载量为10%时,改性粉煤灰吸附磷酸盐的效果最佳;②改性粉煤灰对磷酸盐的吸附速度很快,20min可达吸附平衡;③改性粉煤灰对磷酸盐的吸附行为能较好地符合Langmuir等温吸附模型和Freundlich等温吸附模型,但在Freundlich模式下表现为两个线性区;④pH对改性粉煤灰吸附磷酸盐的性能有显著影响,随着pH的升高对磷酸盐的吸附能力逐渐增加。  相似文献   

15.
Discharge of wastewater containing nitrogen and phosphate can cause eutrophication. Therefore, the development of an efficient material for the immobilization of the nutrients is important. In this study, a low calcium fly ash and high calcium fly ash were converted into zeolite using the hydrothermal method. The removal of ammonium and phosphate that coexist in aqueous solution by the synthesized zeolites were studied. The results showed that zeolitized fly ash could efficiently eliminate ammonium and phosphate at the same time. Saturation of zeolite with Ca2+ rather than Na+ favored the removal of both ammonium and phosphate because the cation exchange reaction by the NH4 + resulted in the release of Ca2+ into the solution and precipitation of Ca2+ with PO4 3? followed. An increase in the temperature elevated the immobilization of phosphate whereas it abated the removal of ammonium. Nearly 60% removal efficiency for ammonium was achieved in the neutral pH range from 5.5 to 10.5, while the increase or decrease in pH out of the neutral range lowered the adsorption. In contrast, the removal of phosphate approached 100% at a pH lower than 5.0 or higher than 9.0, and less phosphate was immobilized at neutral pH. However, there was still a narrow pH range from 9.0 to 10.5 favoring the removal of both ammonium and phosphate. It was concluded that the removal of ammonium was caused by cation exchange; the contribution of NH3 volatilization to immobilization at alkaline conditions (up to pH level of 11.4) was limited. With respect to phosphate immobilization, the mechanism was mainly the formation of precipitate as Ca3(PO4)2 within the basic pH range or as FePO4 and AlPO4 within acidic pH range.  相似文献   

16.
Glasshouse experiments were conducted twice to assess the ash amendments (0, 20, and 40% with soil), a phosphate solubilizing microorganism Pseudomonas striata and a root-nodule bacterium Rhizobium sp on the reproduction of root-knot nematode Meloidogyne incognita and on the growth and transpiration of pea. Amendments of fly ash with soil had no effect on transpiration. However, M. incognita reduced the rate of transpiration from 1st week onward after inoculation while inoculation of Rhizobium sp and P. striata increased transpiration from 1st week onward after their inoculation both in nematode inoculated and uninoculated plants. Increase in transpiration was greater when both organisms were inoculated together. Addition of 20 and 40% fly ash with soil was beneficial for plant growth both in nematode inoculated and uninoculated plants. Inoculation of above organisms also increases plant growth of nematode inoculated and uninoculated plants in different fly ash soil mixture but increase in growth was greater when both organisms were inoculated together. Use of 20% fly ash increased galling and nematode multiplication over plants grown in without fly ash while 40% fly ash had adverse effect on galling and nematode multiplication. Rhizobium sp had greater adverse effect on galling and nematode multiplication than P. striata. Use of both organisms together had greater adverse effect on galling and nematode multiplication than caused by either of them alone. Highest reduction in galling and nematode multiplication was observed when both organisms were used in 40% fly ash amended soil. However, highest transpiration was observed in plants without nematodes and inoculated with both organisms together both in with or without fly ash amended soil.  相似文献   

17.
18.
柳州市大气颗粒物中多环芳烃的分布特征及来源   总被引:5,自引:0,他引:5  
采用气相色谱/质谱联用技术(GC/MS)检测了柳州市大气颗粒物样品中的PAHs,比较了柳州市各区大气颗粒物中多环芳烃含量的差异以及不同季节对多环芳烃含量的影响,讨论了其分布规律及污染源。  相似文献   

19.
This article deals with the co-coagulation of dyeing wastewater by coal fly ash using FeSO4 as coagulant, Benzo Scarlet 4BS and Brilliant Acid Scarlet 3R as the testing dyes. The optimal concentration of FeSO4 for co-coagulation process is 0.6–0.8?g/L wastewater, and the concentration of fly ash 4–5?g/L. The experimental results show that the co-coagulation process by fly ash helps to improve the color reduction, greatly accelerate the formation and settling of the floc, and reduce the content of the floc. The mechanism for co-coagulation process is discussed and similar effect is obtained when the co-coagulation method is applied for the treatment of the real dyeing wastewater samples.  相似文献   

20.
以小区试验进行了粉煤灰复土造田种植高羊茅的试验 .对高羊茅生长发育、生理功能和矿质积累的研究结果表明 :含 30 %以下粉煤灰复合土能提高高羊茅植株光合作用和氮素利用能力 ,促进植株生长 ,不会对植株产生伤害 ;当复合土中粉煤灰含量达 4 0 %时 ,高羊茅光合作用、蒸腾作用和氮素利用能力降低 ,细胞膜脂质过氧化水平升高 ,膜透性增大 ,SOD、POD和CAT活性降低 ,植株生长被抑制 ;随着复合土中粉煤灰含量的升高高羊茅植株Mn、Zn、Ca、Mg的质量分数升高 ,Cu的质量分数无显著变化 .研究建议粉煤灰复土造田以 30 %粉煤灰复合土为宜 .图 3表 6参 19  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号