首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新疆喀什地区地下水氟的空间分布规律及其富集因素分析   总被引:1,自引:0,他引:1  
陈劲松  周金龙  陈云飞  张杰  魏兴  范薇 《环境化学》2020,39(7):1800-1808
高氟地下水严重影响当地居民的身体健康.基于新疆喀什地区571个地下水样的氟离子实测含量,运用Mapgis软件绘制研究区地下水氟含量分布图,结果表明,研究区地下水氟含量呈西部、北部高于东部、南部,中部最低的特点;山麓斜坡冲洪积砾质平原区氟含量表现为浅层潜水高于深层潜水,中下游河流冲积平原区地下水氟含量表现为潜水浅层承压水深层承压水.采用绘制Gibbs图、Piper三线图、离子比例图等方法对研究区水化学环境特征及地下水氟的富集因素进行研究,结果表明,研究区地下水氟源于山前含氟基岩;受地下水径流条件影响,研究区地下水氟含量平均值表现为中下游河流冲积平原区山麓斜坡冲洪积砾质平原区;蒸发浓缩作用使F~-浓度进一步增大;研究区高氟地下水水化学类型主要为HCO_3-Na和Cl·SO_4-Na型,地下水弱碱性环境有助于F~-的富集.  相似文献   

2.
地下水资源是焉耆盆地生活、生产及生态用水的主要供水水源.深入研究焉耆盆地地下水演化特征及水文地球化学过程对合理开发地下水资源及保护地下水环境具有重要意义.利用Gibbs图阐明了焉耆盆地平原区地下水所经历的水文地球化学作用(大气降水、蒸发浓缩和岩石风化作用等),平原区采样点主要分布在Gisbbs图的右上角及中部左侧,表明平原区地下水受风化、蒸发浓缩作用影响,且受大气降水作用影响较小;方解石、白云石等碳酸盐矿物,以及岩盐、石膏等蒸发岩的风化溶解是平原区地下水主要离子来源,应用PHREEQC地球化学模拟软件计算了平原区各矿物饱和指数,大部分采样点方解石与白云石未达到饱和状态;随着平原区地下水中的TDS和Cl-浓度的逐渐升高,Mg~(2+)在地下水中的富集受到了白云石沉淀过程的限制,而Ca~(2+)的含量随TDS的增大而持续增加,并结合平原区2011年与2014年地下水水化学Piper三线图,平原区地下水大部分呈Ca·Na型或者Ca·Mg型;地下水ORP值均为正值,表明平原区地下水处于氧化状态;根据离子比例法,γNa+/γ(Na++Ca~(2+)+Mg~(2+))比值深层承压水潜水浅层承压水,表明平原区地下水阳离子交换作用由强到弱依次为深层承压水、潜水、浅层承压水.  相似文献   

3.
泰莱盆地孔隙水水化学特征及其控制因素分析   总被引:1,自引:0,他引:1  
为了解泰莱盆地孔隙水水化学特征及控制因素,运用数理统计、相关性分析、Piper图、Gibbs图等方法,分析了研究区孔隙水的主要离子及水化学特征,并探讨了其控制因素.结果表明,泰莱盆地孔隙水中主要阳离子为Ca~(2+)、Na~+,占阳离子总量的86%以上,而阴离子则以HCO~-_3、NO~-_3、SO■为主,占阴离子总量的85%以上;水化学类型较为复杂,以HCO_3·SO_4(SO_4·HCO_3)-Ca·Mg(Ca)为主;pH均值为7.42,其pH变异系数较小,整体呈现弱碱性;研究区TDS均值为866.09 mg·L~(-1),其北部及南部靠近基岩区的TDS值整体较小,呈现出南、北两侧值低,越向泰莱盆地中部越高的现状.Gibbs图及离子端元图结果表明,水化学组分主要受水-岩作用控制,以硅酸盐岩风化溶解为主且存在碳酸盐岩风化溶解,分析与研究区南、北部基岩裂隙水和岩溶水的补给有关.  相似文献   

4.
滹沱河流域地下水水化学特征演化及成因分析   总被引:1,自引:0,他引:1  
王慧玮  郭小娇  张千千  李兵岩 《环境化学》2021,40(12):3838-3845
为研究滹沱河流域地下水的水化学特征及其演化规律,2018年1月(枯水期)和9月(丰水期)分别采集该地区地下水样品33组,运用Piper三线图、Gibbs图以及离子比例系数法,全面分析了研究区地下水的时空动态变化、水化学特征及其演化过程.结果 表明,研究区地下水主要的污染因子是TH和NO3-,其超标率高达69.7%和36.4%,水化学指标的空间变化主要受到人类活动、地下水埋深和地层岩性的控制,其浓度表现为岗南水库-黄壁庄水库间沟谷地带大于冲洪积扇地区;水化学指标的时间变化主要受到季风气候(降雨)的影响,水化学参数的浓度表现为枯水期要高于丰水期.岗南水库-黄壁庄水库间沟谷地带水化学类型以HCO3·SO4-Ca型水和HCO3·Cl-Ca型水为主,滹沱河冲洪积扇地下水水化学类型以HCO3·SO4-Ca(Mg)型为主.该地区地下水水化学形成主要以岩土风化-溶滤作用为主,同时受蒸发浓缩作用的影响.地下水中的化学组分主要来源于岩盐溶解和大气降水,同时,离子交换作用也有一定的贡献.  相似文献   

5.
以2018年新疆和田东部平原区116组地下水水质检测数据为基础,综合运用因子分析、Piper三线图、Gibbs模型、离子比值法和水文地球化学模拟等方法对其水化学特征及演化规律进行分析.结果表明:研究区地下水中Na+和Mg2+为主要阳离子,Cl-和SO24-为主要阴离子,地下水类型为SO4·ClCa·Mg型高硬度高咸水;因子分析表明该区地下水水化学组分受岩石溶滤作用和蒸发浓缩作用控制;水中离子主要来源于蒸发盐岩的溶解,其次为碳酸盐岩和硅酸盐岩的溶解.单一结构潜水主要受蒸发浓缩作用、岩石溶滤作用和人类活动等因素影响,承压水受阳离子交换作用影响.水文地球化学模拟结果表明:沿地下水流向,水中离子总量累积,岩盐、白云石和石膏发生溶解,方解石发生沉淀.  相似文献   

6.
孙英  周金龙  魏兴  雷米  曾妍妍  马俊  尹鹏 《环境化学》2019,38(11):2601-2609
以新疆维吾尔自治区喀什地区巴楚县平原区为研究区,对地下水进行系统取样分析.由描述统计分析结果可知,研究区地下水属于总溶解固体、总硬度偏高的中性-偏弱碱性水,地下水中阳离子以Na~++K~+为主,阴离子以SO■为主.采用Piper三线图对2014年和2017年地下水水化学类型进行划分,结果表明,地下水水化学类型由SO_4·Cl-Na·Ca型和SO_4·Cl-Na型过渡到以SO_4·Cl-Na·Ca型和SO_4·Cl-Na·Ca·Mg型为主.通过Gibbs图解法、离子比值法和饱和指数法等对地下水水化学成因进行分析,结果表明,研究区地下水化学组分主要受蒸发-浓缩作用影响,部分受岩石风化作用影响,大气降水、阳离子交替吸附作用和人类活动对地下水化学组分形成影响较小.  相似文献   

7.
SO_4~(2-)作为岩溶地区水化学环境变化的重要指标之一,对研究流域水文地球化学过程的演化以及水资源的保护具有重要的意义.为探究白云岩地区池武溪流域SO_4~(2-)的分布特征及主要来源,通过运用Piper图、Gibbs图、主成分和灰色关联度方法,对该区域内地下水和地表水共44个水样的水化学相关阴阳离子(Sr~(2+)、Ca~(2+)、Mg~(2+)、Fe~(2+)、SO_4~(2-)和HCO_3~-等离子)进行系统性分析,结果表明,池武溪流域水化学类型主要分为两类:HCO_3-Ca型、HCO_3-Ca·Mg型,部分地下水水点是以SO_4-Ca型和SO_4-Ca·Mg型为主.在空间分布方面,地表水SO_4~(2-)浓度空间变化较平缓,SO_4~(2-)含量较高的区域主要集中在洞穴密集分布的水样点及其邻近区域,在河流交汇处SO_4~(2-)含量少,最低处仅有9.727 mg·L~(-1),地下水呈现以石膏晶洞、皮硝洞为中心,向两级逐渐递减的规律,最高值出现在石膏晶洞、皮硝洞附近,高达634.579 mg·L~(-1).Gibbs图表明,流域内岩溶水中的离子主要来源于岩石风化作用.主成分分析(PCA)结果说明,地表水与地下水存在明显的水力联系且流域内的离子来源于碳酸盐岩与硫酸盐岩的风化作用.灰色关联度排序结果表明,在天青石中SrSO_4的溶解和还原过程为主要作用,FeS_2、CaMg(CO_3)_2与石膏的综合作用,对流域内岩溶水的SO_4~(2-)有着重要的贡献,在地表水中的贡献率分别为0.772、0.701、0.681和0.663;地下水中分别为0.893、0.791、0.799和0.772.  相似文献   

8.
黄河流域马莲河枯水期水化学特征及形成机制   总被引:1,自引:0,他引:1  
为查明马莲河流域水环境现状,于2016年4月采集河水、支流水和地下水样品37组,运用Piper三线图和同位素分析来探究水体主要阴阳离子、氢氧稳定同位素特征及其空间变化,结合Gibbs图、端元图解和相关性分析等方法揭示河水化学组分的形成作用.结果表明:枯水期马莲河水呈弱碱性,总溶解固体TDS均值2685.1 mg·L-1,离子组成以Na~+、Mg~(2+)、Cl~-、SO_4~(2-)为主,水化学特征和中国主要河流有较大差异.沿着流向TDS和Cl~-、Na~+质量浓度呈降低趋势、水化学类型具分带规律.不同水体δD、δ~18O分布特征不一,地下水沿着当地降雨线分布,河水和支流水沿着蒸发线分布.硫酸盐和岩盐是水体离子的主要来源,河水化学组成由蒸发盐风化、蒸发浓缩和地下水补给3种作用控制.其中,蒸发盐风化是首要因素,决定了河水化学组分的宏观特征,蒸发作用和地下水补给影响了河水化学组成的空间变异.  相似文献   

9.
通过对2017年4月连续采集的呼伦湖湖水、入湖河水、周边地下水与同年降水的主要离子进行水化学分析,结合呼伦湖流域水文地质资料,综合运用统计分析、相关性分析、Piper三角图、Gibbs图及离子比等方法分析了呼伦湖流域地表水与地下水主要离子组成特征及来源。结果表明,呼伦湖流域地表水与地下水水化学组成中优势阴离子为HCO_3~-与Cl~-,优势阳离子组成特征不同。其中,湖水与地下水主要由Na~+与Mg~(2+)组成;河水主要由Na~+、Ca~(2+)组成。湖水与河水TDS值变化范围分别为695~852 mg·L~(-1)与42~193mg·L~(-1),变化范围小,地下水TDS值变化范围为248~4610mg·L~(-1),分布差异明显。流域水体主要受碳酸盐与蒸发岩风化溶解共同作用控制,地下水TDS值变化主要受流域地质条件产生控制下的蒸发作用影响,蒸发作用强度为:呼伦湖湖水东岸地下水南岸地下水西岸地下水河水。呼伦湖流域水体中的离子的主要来源及其变化特征不受大气降水的控制,呼伦湖流域水体中NO_3~-与SO_4~(2-)的来源方式不同,研究区周围硝矿场的污染是导致部分地下水NO_3~-含量超标的主要因素,牧民存储草垛与牛粪堆的不合理方式也是造成地下水中NO_3~-污染因素之一。  相似文献   

10.
为了对泰莱盆地的地下水资源进行合理开发利用,通过现场调查以及测定盆地各类型地下水的水化学成份,初步研究了该区域的地下水化学类型分布特征及其控制因素.结果表明,泰莱盆地各地下水中阳离子以Ca~(2+)和Mg~(2+)为主,阴离子以HCO_3~-和SO_4~(2-)为主,主要水化学类型有HCO_3-Ca型、HCO_3·SO_4-Ca型、HCO_3-Ca·Mg型、HCO_3·SO_4-Ca·Mg型和SO_4-Ca·Mg型,部分地区NO-3较高.研究区地下水中,离子基本以牟汶河为中轴线,由盆地边缘基岩出露区向盆地内部,呈逐渐上升趋势.盆地内地下水中,离子含量主要受水—岩作用的影响,其主要来源是区域内方解石、白云石等碳酸盐岩和石膏等硫酸盐岩的共同溶解.  相似文献   

11.
袁宏颖  杨树青  丁雪华  王波  杨新民 《环境化学》2019,38(10):2336-2347
为明确秋浇前后地下水营养盐变化特征,探究其水化学组成的演变及来源问题,选取乌拉特灌域为研究区,2018年8—11月跟踪监测地下水及灌溉水,收集地下水样160个,采用空间插值、Piper三线图、Gibbs图等方法,分析了灌域地下水与引黄灌溉水中氮磷元素及水化学组成的动态变化特征,对当地农业生产及地下水环境保护具有一定的指导意义.结果表明,乌拉特灌域地下水TN、TP含量差异较大,TN含量受秋浇影响8—11月逐月升高;人类活动差异使秋浇前TN含量呈现非平稳的空间分布特征,秋浇活动及渠系排干密集地区地下水中TN含量明显高于其它地区;由于土壤对磷素的固定能力较强,地下水中TP含量秋浇前后时空间变化无明显规律,TP含量基本不受秋浇影响.根据地下水中主要盐分离子含量分布情况,将乌拉特灌域主要分为4个区,其中,Ⅲ区盐分含量最高,且秋浇后明显增加,11月Na~+、Cl~-均值分别达857.52 mg·L~(-1)、1246.09 mg·L~(-1).灌域地下水水化学类型以Na~+-Mg~(2+)-Cl~--SO■型、Na~+-Cl~-型为主,各月地下水水化学补给来源基本相同,灌溉水补给及土壤淋融作用使Cl~-和Na~+在地下水化学组成中占主导地位.Gibbs图表明,引黄灌溉水水化学组成主要受岩石风化和蒸发作用共同控制,地下水水化学来源主要受蒸发作用和人类活动控制,阴离子受人类活动影响更显著.其中,农田灌溉、污水排放是最主要的影响因素.  相似文献   

12.
为摸清内蒙古达里诺尔湖湖泊水体与入湖河水的水化学主要离子组成特征及其控制因素,于2013年6—9月对湖水、河水进行采样.采用水化学类型三角图分析不同湖水与河水的主要离子组成,利用Gibbs图分析水体化学成分主要驱动因素,在此基础上,运用河水主要离子比例关系图进一步分析入湖河水离子主要来源.结果显示,达里诺尔湖湖水总溶解固体(TDS)含量范围为5800—6170 mg·L~(-1),平均值为5990 mg·L~(-1),入湖河水TDS含量范围为140—310 mg·L~(-1),平均值为200 mg·L~(-1),远低于湖水的TDS值.入湖的河水属于淡水,而湖水则已演变为中度咸水.湖水、河水主离子组成以及水化学类型具有一定的差异,其中,湖水离子含量特征为HCO-3(2564.60 mg·L~(-1))Cl-(2025.29 mg·L~(-1))SO2-4(424.02 mg·L~(-1)),Na+(2070.68 mg·L~(-1))K+(159.24 mg·L~(-1))Mg~(2+)(20.04 mg·L~(-1))Ca~(2+)(5.09 mg·L~(-1));河水离子含量特征为HCO-3(118.93mg·L~(-1))Cl-(24.99 mg·L~(-1))SO_4~(2-)(11.77 mg·L~(-1)),Na~+(49.84 mg·L~(-1))Ca~(2+)(27.83 mg·L~(-1))Mg~(2+)(14.55 mg·L~(-1))K+(6.56 mg·L~(-1));依据阴、阳离子所占比例进行分类,湖水的水化学类型为Cl-HCO_3~-Na型,贡格尔河为Cl-HCO_3-SO_4-Na-Ca型,浩来河为Cl-HCO_3-Na-Ca-Mg型,沙里河为HCO_3-Na-Mg型,亮子河为HCO_3-Ca-Na型.从水化学驱动因素上看,其水化学组成自然起源主要受自身蒸发-结晶作用的影响,部分区域受到农业活动、放牧及旅游业等人类活动影响,而贡格尔河、浩来河、亮子河及沙里河4条入湖河水的水化学组成落在Gibbs模型的中部,则主要受岩石风化作用控制,4条河流主要受碳酸岩风化影响,钠硅酸岩风化对河水中阳离子的贡献也较大.结合入湖河水水质、水化学驱动因素分析,近年来湖水水体盐化主要是受湖区蒸发量增大、入湖流量减少、湖区面积萎缩的影响,入湖盐分的贡献及人类活动的影响则相对较小.  相似文献   

13.
通过对武夷九曲溪流域地表水体化学组成的分析,运用离子三角图、端元图和Gibbs图定性分析了流域的化学特征、岩性来源控制和主要自然作用机制,运用主成分分析定量判断离子的主要来源,并计算流域风化速率和碳汇作用.研究结果表明:(1)九曲溪流域水化学类型为重碳酸盐类钙组Ⅰ型水,并以硅酸盐矿物风化产物为主要来源,碳酸盐矿物风化产物次之.(2)流域水化学特征整体上受岩石风化和大气降水共同影响.(3)物质来源以碳酸岩和硅酸岩为主,贡献率超过50%.(4)流域的化学风化速率为27.91 t·km~(-2)·a~(-1),大气CO_2消耗量为1.01×108mol·a~(-1),消耗率为5.40×105mol·km~(-2)·a~(-1).结果揭示了湿热季风区流域化学风化对碳汇作用的重要性,以及流域内岩性、气温、降水量以及土地利用类型等因素对物源贡献的复合作用.  相似文献   

14.
基于多元统计方法的岩溶地下水化学特征及影响因素分析   总被引:1,自引:0,他引:1  
为研究广西红水河中下游流域马山地区岩溶地下水化学特征及影响因素,综合应用描述性分析、聚类分析和因子分析等多元统计的方法,对研究区36组水样的12项指标进行系统分析.结果表明,研究区地下水化学类型以HCO_3-Ca型为主,地下水化学成分具有明显的空间变异性;地下水化学特征受灰岩的风化-溶滤作用、人类活动、白云岩的溶解、工矿业活动等因子的共同影响,4个因子能够解释地下水成分形成的82.88%,其中灰岩的风化-溶滤作用是主要影响因子;地下水中的Ca~(2+)、总硬度(CaCO_3)、TDS、HCO_3~-主要受灰岩的风化-溶滤作用的控制,Cl~-、Na~+、NO_3~-和K~+主要受人类活动特别是农业和生活废水等因素的影响,Mg~(2+)受白云石矿物溶解的控制,SO_4~(2-)和F~-反映了工矿业活动的影响.  相似文献   

15.
为探究平寨水库上游水化学沿程变化情况,采用因子分析、Piper三线图、Gibbs及离子关系对比等经典地质化学分析方法,分析平寨水库上游水化学变化特征及成因.结果表明,水化学类型主要为HCO3-Ca型,沿程河段区-河库区-库区水化学呈现由SO4·Cl-Na·Ca·Mg型到HCO3·NO3-Ca·Mg再到HCO3-Ca·Mg型的演变特征.离子浓度季节变化明显,冬季高于夏季;空间上,除Na+和SO42-外,其余离子浓度整体表现为库区、河-库区大于各河段.Gibbs图表明水体水化学组成受岩石风化影响显著,离子关系对比图表明河段区水体受人为活动影响较强,因子分析结果表明研究区四季水化学组分主要受自然盐岩风化以及较小程度的人类源污染.  相似文献   

16.
新疆吉木乃诸河水体氢氧同位素和水化学特征   总被引:2,自引:0,他引:2  
利用2018年6月和11月在新疆吉木乃诸河流域采集的河水、冰雪融水和降水样品,对流域水体的水化学成分和氢氧稳定同位素(D,~(18)O)组成的时间和空间特征进行了系统研究.结果表明,吉木乃诸河在丰水期和枯水期阳离子均以Ca~(2+)为主,阴离子以HCO~-_3为主,其次分别为Na~+和SO_4~(2-).在空间上,Na~+、Mg~(2+)、SO_4~(2-)、Cl~-随着海拔的降低呈增加趋势.通过Piper图可以判断出,吉木乃诸河水化学类型为HCO_3-Ca型.利用Gibbs图可知流域内主要离子组成与各类岩石的风化作用有关,大气降水和蒸发作用的影响相对较小.结合当地的水文地质情况,运用离子含量比值法,可以发现离子主要来源于流域内碳酸盐风化和含硫矿物的氧化.丰水期吉木乃诸河地表水中δ~(18)O和δD较枯水期高,冰川融水的同位素值没有明显的季节变化,降水中的同位素值季节变化较大,其区域大气降水线方程为δD=7.5δ~(18)O+5.4 (R~2=0.99).吉木乃诸河河水中稳定同位素与海拔呈现正相关关系,主要原因是蒸发作用的增加,地表水同位素值偏负.该区域地表径流与冰川融水密切相关,冰川融水对该流域水资源的补给贡献较大.  相似文献   

17.
流溪河承担了广州市白云区供水的重任,流域内的地下水作为应急水源具有重要的战略意义和生态维持作用.为合理开发利用流溪河流域地下水,了解地下水的形成及其离子的迁移和转化规律,分别于2015年8月和12月共采集90个地下水水样,通过分析地下水化学特征、稳定同位素D和18O分布规律,并利用Gibbs分布图和相关性分析揭示旱季和雨季的地下水化学时空分布特征、地下水及离子来源.结果表明,研究区地下水主要受降水补给.空间上,上游区受人类活动影响比中下游区小,从上游到下游区,水化学类型总体从Ca-HCO_3型和Ca-Na-HCO_3型向Ca-Na-HCO_3-Cl型、Ca-Na-Cl-HCO_3型和Na-Ca-Cl-HCO_3型转变,地层的岩性对于地下水类型影响较大;时间上,水化学特征季节性差异不显著.流域内主离子的来源主要为岩石风化,Ca~(2+)、Mg~(2+)、Na~+与HCO_3~-的来源以碳酸盐岩和硅酸盐岩风化为主,其中,碳酸盐岩的风化占主导地位;NO_3~-和Cl~-主要来自人类生活污染的输入,NH_4~+与TP主要来源于面源污染.  相似文献   

18.
河流的水化学特征受地质、气候和人类活动等多种因素的支配,可能通过水-环境-粮食-健康的转移链构成对流域经济和社会的持续影响.为此,分别于2015年4月和10月采集了龙江-柳江-西江流域38个点位共70份水样,测定所有样品的主要物理化学指标,运用阴阳离子三角图和相关性分析来探究水体中主要阴阳离子的含量分布及其来源,结合Gibbs图和端元图来分析水化学组成的控制过程.结果表明,龙江-柳江-西江流域水体整体呈弱碱性,四月份和十月份的TDS均值分别为204.81 mg·L~(-1)和234.20 mg·L~(-1),低于世界主要大河的均值,EC、TZ-、TZ+、TDS和TH的均值空间分布都表现为龙江段西江段柳江段,含量最高的阴阳离子分别为HCO_3~-和Ca~(2+),流域的水化学类型为HCO_3~--Ca~(2+)型;Ca~(2+)、Mg~(2+)与HCO_3~-主要来源于碳酸盐岩的溶解,Cl~-、NO_3~-和SO_4~(2-)主要来源于酸沉降、城镇生活污水和地下水的输入,K+和Na+主要来源于硅酸盐岩的溶解和人类活动的排放;该流域水体表现为典型的喀斯特地区水质特性,水化学组成主要由碳酸盐岩风化作用所控制,不同的下伏岩层分布决定了各江段控制作用的强弱,也决定了流域水化学组成的空间差异性,碳酸和硫酸共同参与了碳酸盐岩的风化作用,但以碳酸为主.总体而言,对龙江-柳江-西江流域水化学特征及其成因的上述认识,有助于制定水资源管理措施和水环境保护战略.  相似文献   

19.
城市地下水环境对城市的可持续发展具有重要意义.本文运用数理统计分析、改进的模糊综合评价、综合评价法、水化学和因子分析法对研究区地下水水化学特征及水质进行分析评价.结果表明,研究区地下水中钠离子、钙离子、硫酸根和碳酸氢根相对含量较高,承压水水化学组分比潜水稳定.潜水的水化学类型主要是HCO3-Ca·Mg和SO4·Cl-Ca·Mg·Na,承压水的水化学类型主要是HCO3-Na和HCO3-Ca·Mg.两种评价方法均显示,研究区潜水以Ⅱ类和Ⅲ类水居多,模糊综合评价法显示研究区承压水大部分为Ⅰ类水,而综合评价法显示研究区多为Ⅱ类、Ⅲ类水.水岩作用是水化学组分的主要控制因素.相较于承压水而言,潜水水质存在不同程度的污染,潜水污染的原因主要包括原生地质背景污染和人为污染两大类.该研究为研究区地下水资源的合理开发利用和生态环境保护与建设提供了理论依据.  相似文献   

20.
赣南小流域的水文地球化学特征和主要风化过程   总被引:17,自引:4,他引:13  
对赣南花岗岩小流域进行采样、测试及分析,发现其河水含有较低的矿化度,水化学组成以Na ,Ca2 ,Cl-1和HCO-3为主,溶解性Si的含量明显较高,代表了典型硅酸盐地区河流的相应化学组成.通过Gibbs图分析,赣南流域大部分地区受大气降水的影响比较显著,"蒸发-浓缩"类型的小流域也较多.根据主成分分析和因子分析的结果,定量地估算了大气中CO2和三类岩石对河水中各种离子的贡献比例.与黄河相比,赣南流域受硅酸盐岩风化作用强烈,但主要影响因素仍是碳酸盐和蒸发盐岩,二者对赣南流域溶解质的贡献率分别为42.8%和29.2%,大气中CO2对河水溶解质的贡献率为21.4%,低于世界平均水平.主要风化反应以岩盐和方解石的溶解为主,Si/(Na* K)比值较低,说明风化反应在表生环境中进行,其产物是富含阳离子的次生矿物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号