首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
芦苇生物炭对水中铅的吸附特性   总被引:1,自引:0,他引:1  
将芦苇秸秆在500℃下缺氧热解4 h制备成生物炭.采用批量平衡实验法,考察溶液p H值、生物炭投加量、溶液离子强度以及生物炭灰分对芦苇生物炭吸附水中Pb~(2+)的影响.结果表明:溶液p H值在2.0—5.5范围内,芦苇生物炭对Pb~(2+)的吸附量随着p H值升高而增加;生物炭最佳投加量为1.8 g·L-1,Pb~(2+)的去除率为96.6%;溶液中Na~+、Ca~(2+)的存在会抑制芦苇生物炭对Pb~(2+)的吸附;去除灰分后的生物炭对Pb~(2+)的吸附量降低.不同温度下的吸附等温线更符合Langmiur方程.在283、298、313 K下的最大实际吸附量分别为21.89、24.06、24.95 mg·g~(-1).热力学研究结果为ΔGθ0、ΔHθ0和ΔSθ0,说明该吸附是自发、熵增的吸热过程.吸附动力学线性拟合结果更符合假二级动力学方程.芦苇生物炭吸附前后的红外光谱和XRD衍射谱图分析表明吸附过程存在离子交换和阳离子-π作用.去除灰分的生物炭吸附Pb~(2+)后溶液中Na~+、K~+、Ca~(2+)、Mg~(2+)浓度升高,表明离子交换是主要吸附机制.  相似文献   

2.
以NH_4H_2PO_4、Ca(NO_3)_2·4H_2O、Sr(NO_3)_2和尿素[CO(NH_2)_2]为原材料,通过水热法合成了一种单分散、由纳米片自组装而成的绣球花状三维(3-D)掺锶碳羟基磷灰石(Sr-CHAp),并用于吸附酸性水溶液中的铅离子(Pb~(2+)).研究了溶液p H、吸附时间、初始浓度对Sr-CHAp材料吸附Pb~(2+)的影响及在其在不同p H条件下的吸附机理.采用XRD、SEM、FI-IR和BET等技术对材料及吸附产物进行表征.结果表明,该吸附剂材料表面具有介孔结构,平均孔隙宽度是11.10 nm,具有较大的比表面积(43.54 m~2·g~(-1)),在pH3时对Pb~(2+)具有较高的饱和吸附量(985.1 mg·g~(-1));其等温线吸附数据符合Langmuir模型,动力学吸附数据符合伪二级动力学模型;在酸性溶液中其对Pb~(2+)的吸附主要表现为溶解/沉淀机理,溶液p H值的大小影响吸附后的产物,强酸性条件下有利于PbHPO_4的生成,而p H值为3—6时主要生成Pb_(10)(PO_4)_6(OH)_2.  相似文献   

3.
近年来,水体重金属污染日趋严重,筛选出绿色高效处理重金属污染废水的吸附材料迫在眉睫.本文采用振荡吸附法研究了10种树皮类生物质吸附材料在不同投加量、初始浓度、pH和吸附时间下对模拟污染废水中Pb~(2+)和Cd~(2+)的吸附效率.结果表明,在25℃和180 r·min~(-1)恒温振荡条件下,10种树皮对Pb~(2+)和Cd~(2+)的吸附效率存在明显差异(P0.05).它们对模拟废水Pb~(2+)和Cd~(2+)的吸附量和吸附率,分别随初始浓度的增加呈递增和递减趋势;在0—120 min内随吸附时间的延长而提高;在pH 2.0—4.0范围内,随pH的增大而明显提升.红外光谱分析表明,羟基和羧基参与了Pb~(2+)和Cd~(2+)吸附.在投加量0.5 g·L~(-1)、模拟废水初始浓度50 mg·g~(-1)、pH 5.50和吸附时间120 min条件下,侧柏(Platycladus orientalis)皮、核桃树(Juglans regia)皮和构树(Broussonetia papyrifera)皮对Pb~(2+)的吸附量可达71.77—83.61 mg·g~(-1),对Cd~(2+)的吸附量达到64.69—70.33 mg·g~(-1),对实际污染废水具有较高的吸附率,最高可达98.21%.因此,侧柏皮、核桃树皮和构树皮可能是是吸附复合污染废水中铅镉的潜在材料.  相似文献   

4.
农林废弃物基生物炭对重金属铅和镉的吸附特性   总被引:2,自引:0,他引:2  
以沙柳、水稻和玉米秸秆3种农林废弃物为原材料,于500℃条件下热解制备生物炭,并通过元素分析、比表面积分析仪、扫描电镜(SEM)和红外光谱(FTIR)等分析方法对所制备的生物炭进行表征。探究了溶液初始pH、干扰离子强度和初始吸附剂投加量等因素对3种生物炭吸附Pb~(2+)和Cd~(2+)作用的影响,讨论了吸附动力学特性及吸附等温特性。结果表明:不同生物质制备出的3种生物炭的碱性和灰分含量由高到低依次为沙柳秸秆生物炭(SWB)、玉米秸秆生物炭(CB)和水稻秸秆生物炭(SB),FTIR检测结果显示3种生物炭表面均含有大量含氧官能团;当溶液pH为3~6时,3种生物炭对Pb~(2+)和Cd~(2+)吸附量随pH值的增加而升高,对Pb~(2+)的吸附效果随着溶液中离子强度的增强而降低,而SWB对Cd~(2+)的吸附效果随离子强度的增加而增加;3种生物炭对Pb~(2+)和Cd~(2+)的吸附过程符合准二级动力学模型,R~2均大于0.99,表明生物炭吸附速率主要由化学吸附机制决定;SWB、SB和CB对Cd~(2+)的吸附过程既符合Langmuir模型,又符合Freundlich模型,而生物炭对Pb~(2+)的吸附过程更适合Langmuir等温模型,表明生物炭对Pb~(2+)的吸附近似单分子层吸附,而对Cd~(2+)的吸附存在多分子层吸附。  相似文献   

5.
铅(Pb~(2+))因溶解度较小,易在土壤中长期滞留,从而造成严重的土壤铅污染。柠檬酸(Citric Acid)作为植物根系分泌的典型天然有机酸,含有大量羧基功能团和活性点位,影响着土壤中重金属的吸附和解吸。为深入了解柠檬酸输入土壤后,Pb~(2+)在土壤中的积累与迁移规律,以石灰性紫色土为研究对象,通过模拟试验,采用平衡液吸附法及柠檬酸、HCl解吸法,研究了不同浓度柠檬酸溶液中石灰性紫色土及各粒径微团聚体对Pb~(2+)的吸附-解吸特性。结果表明:在不同浓度柠檬酸溶液中,石灰性紫色土全土及各粒径微团聚体对Pb~(2+)的吸附量随其初始浓度增大而增加,各粒径间吸附量大小顺序为:(0.002 mm)2~0.25 mm全土0.053~0.002 mm0.25 mm~0.053 mm;柠檬酸浓度在0~1 mmol·L~(-1)范围内,石灰性紫色土全土及各粒径微微团聚体对Pb~(2+)的吸附量明显上升,1~100 mmol·L~(-1)范围内吸附量下降,低浓度的柠檬酸能够有效促进全土及各粒径微团聚体对Pb~(2+)的吸附,高浓度柠檬酸则起抑制作用,降低土壤对Pb~(2+)的吸附量;Freundlich方程对等温吸附过程的拟合达到极显著水平(R2=0.985-0.999),全土和不同粒径微团聚体对Pb~(2+)的吸附为不均匀表面的多层吸附;易解吸率随初始Pb~(2+)质量浓度上升而不断增大,难解吸率不断下降,加入柠檬酸后,易解吸率进一步上升,且随柠檬酸浓度升高而增大。研究柠檬酸溶液中石灰性紫色土对Pb~(2+)的吸附-解吸特性,能够有效预测石灰性紫色土区域重金属的环境效应,对农业环境安全调控具有重要意义。  相似文献   

6.
羟基磷灰石/凹凸棒土复合材料制备及其对水中镉的去除   总被引:1,自引:0,他引:1  
研究了羟基磷灰石/凹凸棒土复合材料(HA/A)的制备及其对Cd~(2+)的吸附性能.用BET、XRD、SEM、FTIR、XPS对凹凸棒土(A)、羟基磷灰石(HA)和HA/A的结构进行了表征.研究了凹凸棒土的投加量、PO■和Ca~(2+)的初始浓度,高温焙烧对材料制备的影响.研究了材料等温吸附模型,动力学以及热力学;探究了pH、阴离子和材料投加量对吸附Cd~(2+)的影响;研究了竞争吸附实验.结果表明,制备最佳条件为:凹凸棒土投加量为4g·L~(-1),硝酸钙初始浓度为8.23 g·L~(-1),不经高温焙烧;机理分析表明,Cd~(2+)吸附过程是一个单分子层的吸热的化学吸附过程;因素实验表明,高pH值利于Cd~(2+)去除,F~-促进吸附, Cl~-抑制吸附.材料对Pb~(2+)、Cu~(2+)、Cd~(2+)、Zn~(2+)吸附量分别为3.70、1.99、1.17、0.99 mmol·g~(-1).  相似文献   

7.
600℃缺氧热解制得牛粪源生物炭(CBC),采用SEM、FTIR和XRD等分析手段对生物炭理化性质进行表征,并通过静态平衡吸附法研究了CBC对甲基紫的吸附动力学及热力学过程.结果表明,甲基紫的吸附量随着其初始浓度的增加而增大,初始浓度由10 mg·L~(-1)增加到40 mg·L~(-1),平衡吸附量由5 mg·g~(-1)提高到30 mg·g~(-1),吸附过程先快后慢,60 min后吸附达到平衡;甲基紫的吸附量还随溶液pH的增加而增大,随温度的升高而增大;用准一级动力学方程、准二级动力学方程、Langmuir吸附等温方程、Freundlich吸附等温方程对试验数据进行拟合,结果表明,准二级动力学模型更准确地反映其吸附动力学过程,Freundlich等温方程与实验数据拟合度更好,即甲基紫在CBC上的吸附以化学吸附为主;吸附热力学参数ΔG~o0、ΔS~o0、ΔH~o0,表明甲基紫在CBC上的吸附是自发进行的吸热过程.  相似文献   

8.
以桑树杆为主要原料,采用氧化和共沉淀法制备桑树杆活性炭/铁锰氧化物复合吸附剂,用扫描电镜、红外光谱、X射线衍射、XPS对其进行了表征,研究了其对Cr(Ⅵ)的吸附性能.探讨了溶液p H值、吸附时间等对吸附效果的影响.实验结果表明,桑树杆活性炭/铁锰氧化物复合吸附剂有羟基、羧基、羟基和内酯基官能团的存在;桑树杆活性炭/铁锰氧化物复合吸附剂上的铁锰分別以Fe_2O_3和Mn O2的形式存在;相比桑树杆生物炭,桑树杆活性炭/铁锰氧化物复合吸附剂对Cr(Ⅵ)的最大吸附量提高了33.02%;当溶液p H值为2时,吸附效果最好;准二级动力学模型对吸附过程的拟合效果最好,当初始浓度为20、50、100 mg·L~(-1)时,拟合的相关系数R~2分别为0.9998、0.9882、0.9829;25℃、35℃和45℃下,Langmuir等温吸附模型拟合的相关系数均为0.9999,对应的最大的吸附量分别为35.93、38.58、48.29 mg·g~(-1).Langmuir等温模型较Freundlich等温模型更适合对Cr(Ⅵ)吸附过程的拟合.热力学参数表明,吸附过程是自发的、吸热的.经过3次的解吸再生,复合吸附剂的再生利用效率为86.80%.  相似文献   

9.
伊利石对水溶液中低浓度铀的吸附   总被引:1,自引:0,他引:1  
采用静态实验方法研究了伊利石对水溶液中铀的吸附特性,通过批实验考察了反应时间、溶液初始浓度、p H值、离子强度、固液比以及温度对吸附的影响,用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)表征伊利石吸附铀前后结构的变化,探讨了伊利石对铀的吸附等温方程和热力学规律,分析其反应机制.实验结果显示,伊利石与低浓度铀溶液接触后立即反应,1 h后反应基本达到平衡;溶液p H和离子强度对伊利石吸附铀的影响显著,当p H=4—7、离子强度为0.001 mol·L-1时,吸附效果最好;在一定条件下,伊利石对水溶液中低浓度铀的吸附量与铀初始浓度呈正比,与固液比呈反比;吸附等温线符合Freundlich模型,相关系数可达0.9966;伊利石对铀的吸附属于吸热反应,反应自发进行,高温促进伊利石的吸附行为.  相似文献   

10.
将金针菇(Flammulina velutipes)、毛木耳(Auricularia polytricha)、杏鲍菇(Pleurotus eryngii)和平菇(Pleurotus ostreatus)等4种食用菌加工废弃物用聚乙烯醇—海藻酸钠(PVA-SA)固定为吸附小球,研究其对Hg~(2+)的吸附效果、影响因素及吸附机理.结果表明,4种吸附剂对Hg~(2+)的最大吸附率金针菇(81.65%)毛木耳(59.89%)平菇(52.52%)杏鲍菇(39.77%),吸附最适p H值为6;比较伪一级动力学模型方程、伪二级动力学模型方程、Elovich模型方程和颗粒内扩散模型方程对吸附过程的拟合结果发现,伪二级动力学模型更适合描述4种吸附剂对Hg~(2+)的吸附过程,化学吸附过程为限速步骤,对Hg~(2+)的吸附速率杏鲍菇平菇毛木耳金针菇,吸附的前30 min为快速吸附过程,经过120 min左右达到吸附平衡;Langmuir热力学模型对吸附过程的拟合效果好,主要为单层吸附.扫描电镜观察(SEM)和红外光谱(FTIR)分析显示,4种吸附剂细胞表面的活性基团与Hg~(2+)的离子交换、络合等化学反应是其吸附Hg~(2+)的主要机理.固定金针菇加工废弃物对青衣江流域水样低浓度Hg~(2+)的去除率为69.35%,对低浓度重金属的生物去除有一定的实际应用价值.  相似文献   

11.
不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能   总被引:1,自引:0,他引:1  
以菌糠废弃物为原料,采用限氧裂解法在500℃条件下制备香菇菌糠、猴头菇菌糠和平菇菌糠生物炭(LEBC、HEBC和POBC).利用SEM、XRD和FTIR等方法对吸附剂进行了表征;通过吸附动力学、等温吸附、生物炭酸化实验探究了3种菌糠生物炭去除水溶液中Cu~(2+)、Cd~(2+)的效果及机理.结果表明,在溶液初始pH 2—3时,3种菌糠生物炭对溶液中Cu~(2+)、Cd~(2+)的吸附量急剧增加.LEBC、HEBC、POBC对Cu~(2+)、Cd~(2+)的吸附符合准二级动力学模型,对Cu~(2+)的吸附速率分别为10.15×10~(-3)、7.08×10~(-3)、0.69×10~(-3) mg·g~(-1)·min~(-1),对Cd~(2+)的吸附速率分别为6.53×10~(-3)、5.19×10~(-3)、0.26×10~(-3) mg·g~(-1)·min~(-1).不同浓度下LEBC、HEBC、POBC对Cu~(2+)的吸附符合Langmuir模型,最大吸附量依次为56.74、11.98、77.32 mg·g~(-1);而Cd~(2+)的吸附符合Freundlich模型,最大吸附量依次为74.26、36.49、70.2 mg·g~(-1).LEBC在较短的时间内能达到较大的吸附量,可作为去除水体中Cu~(2+)、Cd~(2+)的优质吸附剂.XRD和FTIR等分析结果表明生物炭对Cu~(2+)、Cd~(2+)的吸附机制包括物理吸附、阳离子-π作用、官能团络合及沉淀.3种生物炭经酸化处理后,对Cu~(2+)、Cd~(2+)的吸附能力显著下降,表明生物炭中碳酸盐引起的Cu~(2+)、Cd~(2+)表面沉淀在吸附过程中起重要作用.  相似文献   

12.
改性豆饼生物质炭对铅的吸附特性   总被引:1,自引:0,他引:1  
以豆饼为前驱体制备生物炭,并对其进行KOH刻蚀改性,利用场发射扫描电子显微镜(SEM)、比表面积及孔径分析仪(BET)、X-ray能谱仪(EDS)、多晶X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)等对豆饼生物炭(SYB)和改性豆饼生物炭(SYBK)进行表征,比较SYB和SYBK对Pb~(2+)的吸附性能,并研究时间、Pb~(2+)溶液初始浓度和pH对吸附效果的影响规律。结果表明,SYBK含有更丰富的官能团,且比表面积大大增加,SYB和SYBK对Pb~(2+)的等温吸附曲线均符合Langmuir吸附模型,SYBK对Pb~(2+)的实际最大吸附量达711.0 mg·g~(-1),明显高于SYB(293.0 mg·g~(-1))。对比SYB和SYBK的XRD谱图可知,吸附过程中SYB和SYBK表面形成了碱式碳酸铅沉淀,且吸附后溶液中含有大量矿物阳离子Ca~(2+)、Mg~(2+)等。上述结果可为高效吸附环境中Pb的生物炭的修饰或改性方法的研究提供参考。  相似文献   

13.
以蚕丝丝胶(SS)为基材,通过接枝2,5-二硫二脲制备了改性丝胶生物吸附剂(SO),探讨了影响生物吸附的因素,并对比研究了不同体系中生物吸附剂对Ag~+的吸附行为.结果表明,在p H 1.0—6.0范围,吸附率随着p H升高而增大.相同条件下,SO吸附容量和吸附率明显优于SS,在单组分Ag~+溶液中,p H5.0时,SO和SS对Ag~+的吸附率分别为96.2%和57.8%,吸附容量分别为20.8 mg·g~(-1)和12.5 mg·g~(-1).在三组分(Ag~+-Cu~(2+)-Zn~(2+))及五组分(Ag~+-Cu~(2+)-Zn~(2+)-Ni~(2+)-Pb~(2+))溶液中,SO对Ag~+显示出良好的吸附选择性.p H5.0时,SO对其它金属离子很少吸附,而对Ag~+的吸附率分别高达95.8%和93.7%;SS尽管对其它贱金属离子吸附率也较低,但其对Ag~+的吸附率仅为25.4%和23.7%.吸附动力学表明,吸附剂对Ag~+的吸附符合准二级动力学模型,吸附过程为化学吸附,吸附过程活化能Ea(SO)=43.23 k J·mol~(-1),Ea(SS)=59.32 k J·mol~(-1).吸附热力学表明吸附过程为放热的自发过程.25℃吸附平衡时,Ag~+在固液两相的分配系数为K_D~Θ(SO)=5111.K_D~Θ(SS)=273.SO对Ag~+吸附机理主要为配位作用,粒子内扩散为吸附过程的速控步骤.  相似文献   

14.
研究了壳聚糖活性污泥复合吸附剂(SCTS)对废水中Pb~(2+)和Cd~(2+)的吸附性能,通过单因素试验分析了温度、SCTS投加量、pH值、搅拌转速和重金属离子浓度对SCTS吸附性能的影响,正交试验确定了影响因素的主次顺序及最优组合水平。结果表明:影响SCTS吸附废水中Pb~(2+)的因素从大到小依次为pH值、SCTS投加量、Pb~(2+)初始浓度和搅拌转速,吸附Pb~(2+)的最优组合为pH值=2、SCTS投加量为10 g· L~(-1)、ρ(Pb~(2+))初始值为50 mg· L~(-1)、搅拌转速130 r·min-1,Pb~(2+)去除率达95.76%。影响SCTS吸附废水中Cd~(2+)的因素作用力大小依次为pH值、Cd~(2+)初始浓度、转速和SCTS投加量,吸附Cd~(2+)的最优组合为pH值2、SCTS投加量2.5 g· L~(-1)、ρ(Cd~(2+))初始值60 mg· L~(-1)、转速130 r·min-1,此时Cd~(2+)的去除率为96.08%。  相似文献   

15.
张再利  况群  贾晓珊 《生态环境》2010,19(12):2973-2977
以花生壳为生物吸附剂,通过序批式实验研究了吸附剂投量、吸附时间、金属离子初始质量浓度、吸附温度对吸附金属离子的影响,探讨了花生壳吸附的动力学及热力学特性。结果表明,准二级动力学方程能很好地描述花生壳对Pb^2+、Cu^2+、Cr^3+、Cd^2+、Ni^2+的吸附过程。Langmuir模型和Freundlich模型均能较好地描述花生壳对5种重金属离子的等温吸附过程,而Langmuir模型拟合的线性更好。Pb2+、Cu2+、Cr3+、Cd2+、Ni2+5种金属离子的最大吸附量分别是32.25、7.09、3.82、2.95、2.22 mg.g-1,花生壳可用于处理低质量浓度多种重金属混合的废水。热力学研究表明,花生壳对5种金属离子的吸附具有自发、吸热和熵增的特性。  相似文献   

16.
本实验选用安徽某生物质发电厂燃烧炉底渣,通过研究吸附等温线、吸附时间以及电厂灰投加量和溶液初始p H对生物质灰吸附Cu2+的影响,以确定其对水溶液中Cu2+的吸附特性.结果表明,Cu2+初始浓度在50—100 mg·L~(-1)范围内,Langmuir模型能很好地描述生物质电厂底渣对Cu2+的等温吸附规律,其理论饱和吸附量为20 mg·g~(-1),非常接近实际饱和吸附量19.45 mg·g~(-1).溶液初始p H值在2—6范围时,Cu2+的去除率随p H值的升高而增加,当p H在6附近时去除率最佳,接近100%.溶液Cu2+初始浓度为100 mg·L~(-1),体积为50 m L时,随生物质电厂底渣投加量增加,其对Cu2+的去除率上升,但去除效率下降,0.2 g左右可能是达到最佳去除效率和去除率的用量.溶液中Cu2+的去除率随吸附时间的增加而升高,用量越大达到吸附平衡的时间越短,但90 min左右时各个用量的去除率均趋于稳定.  相似文献   

17.
人居生活废弃物生物黑炭对水溶液中Cd2+的吸附研究   总被引:2,自引:0,他引:2  
以人居生活废弃物生物黑炭为材料,探讨生物黑炭对Cd2+的吸附动力学及热力学特性,通过平衡吸附法研究吸附时间、Cd2+初始质量浓度、吸附剂投加量、溶液pH值以及黑炭粒径对Cd2+吸附率的影响.结果表明,吸附时间为2h时基本达到吸附平衡,准二级动力学方程能很好地描述生物黑炭对Cd2+的吸附过程.Langmuir模型能较好地描述生物黑炭对Cd2+的等温吸附过程,根据该模型模拟得到25℃条件下Cd2+最大吸附量为6.22mg·g-1.Cd2+去除率随生物黑炭投加量的增加而增大;生物黑炭对Cd2+吸附量随其粒径减小而增大;溶液初始pH值为4.0~7.5时,pH值变化对Cd2+吸附量的影响不显著.采用人居生活废弃物生物黑炭去除水溶液中Cd2+时,控制溶液Cd2+初始质量浓度30mg·L-1,粒径小于0.25 mm,投加水平8g·L-1,反应温度25℃,反应时间1~2h,Cd2+去除率可达80%.人居生活废弃物生物黑炭可以作为去除污染水体中Cd2+的吸附剂.  相似文献   

18.
采用Fe2(SO4)3和Al2(SO4)3两种盐对活性氧化铝进行改性,通过静态吸附实验,研究了改性活性氧化铝对水中氟离子的吸附特性及影响因素.改性后的活性氧化铝吸附容量显著提高,25℃下吸附容量达到6.25 mg·g-1.改性活性氧化铝对氟的吸附动力学符合拟二级动力学模型,吸附等温线更符合Langmuir等温吸附规律.吸附过程ΔG0<0、ΔH0>0、ΔS0>0,表明改性吸附剂对氟的吸附是自发的,是吸热、熵增加的反应.吸附最佳p H值为6,吸附过程中,共存PO3-4对吸附效果影响最大.  相似文献   

19.
以油页岩渣及其二氧化钛改性材料为吸附剂,探究它们去除水溶液中亚甲基蓝和六价铬的能力.通过实验,控制溶液的pH值、温度、初始浓度和接触时间,观察吸附效果变化特征,研究其动力学和热力学性能.实验表明,改性油页岩渣吸附亚甲基蓝和六价铬的吸附率是未改性的2—3倍,且改性油页岩渣对亚甲基蓝的吸附率可达97%,对六价铬的吸附率不到25%.吸附亚甲基蓝时,pH值越大,吸附效果越好;而吸附六价铬时,最适pH值为4.改性油页岩渣吸附亚甲基蓝实验符合准二阶动力学方程,计算得反应活化能为13.29 kJ.mol-1,表明此过程主要是物理吸附.在热力学方面,由范特霍夫方程计算得ΔG〈0、ΔH〉0,表明此过程自发吸热,可见此过程还伴有化学吸附.Langmuir和Freundlich等温模型拟合结果表明,Langmuir模型数据拟合甚佳,R2=0.9999,说明改性油页岩渣吸附亚甲基蓝是单分子层吸附.二氧化钛改性油页岩渣经7次回收利用后,对亚甲基蓝的吸附效果仅减少约1.5%.  相似文献   

20.
针对地下水还原条件下附着Pb离子氧化石墨烯(GO)纳米颗粒的环境稳定性,实验研究了厌氧条件下Na_2S还原对GO吸附Pb~(2+)以及解吸附过程的影响.采用X射线光电子能谱、傅里叶变换红外光谱、X射线衍射以及表面增强拉曼技术对吸附与解吸附的过程机理进行分析比较.结果表明,GO及Na2S还原生成r GO对Pb~(2+)的吸附过程符合Langmuir吸附模型,最大吸附容量分别为937.65、92.99 mg·g~(-1),GO还原后Pb~(2+)吸附容量减小;厌氧条件下Na2S还原引起GO表面吸附的Pb释放,实验条件下有19.9%—35.3%被吸附的Pb以离子形态释放出来.光谱分析表明,吸附Pb的GO在厌氧条件下被Na2S还原致使GO表面含氧官能团减少,造成Pb解吸附,解吸附释放出的部分Pb与反应体系中的硫化物结合生成PbS沉淀.附着Pb的GO进入还原环境后,以Pb~(2+)离子形式解吸附释放的Pb会引起水体的再污染.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号