首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Anthropogenic contaminants as tracers in an urbanizing karst aquifer   总被引:2,自引:0,他引:2  
Karst aquifers are uniquely vulnerable to contamination. In the Barton Springs segment of the karstic Edwards aquifer (Texas, U.S.A.), urban contaminants such as pesticides and volatile organic compounds frequently are detected in spring base flow. To determine whether contaminant concentrations change in response to storms, and if they therefore might act as tracers of focused recharge, samples were collected from Barton Springs at closely spaced intervals following three storms. Two herbicides (atrazine and simazine), two insecticides (carbaryl and diazinon), and a solvent (tetrachloroethene) described breakthrough curves over a 1-week period following one or more storms. The breakthrough curves were decomposed into two to five log-normal subcurves, which were interpreted as representing pulses of contaminants moving through the aquifer. Each subcurve could be used in the same way as an artificial tracer to determine travel time to and recovery at the spring. The contaminants have several advantages over artificial tracers: they represent the actual compounds of interest, they are injected essentially simultaneously at several points, and they are injected under those conditions when transport is of the most interest, i.e., following storms. The response of storm discharge, specific conductance, and contaminant loading at the spring depended on initial aquifer flow conditions, which varied from very low (spring discharge of 0.48 m3/s) to high (spring discharge of 2.7 m3/s): concentrations and recovery were the highest when initial aquifer flow conditions were low. This behavior provides information about aquifer structure and the influence of aquifer flow condition on transport properties.  相似文献   

2.
Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NOx. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO(3)(-) produced a trend of high delta(18)O-low delta(15)N to low delta(18)O-high delta(15)N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX.  相似文献   

3.
Assessment of sediment contamination in Casco Bay, Maine, USA   总被引:1,自引:0,他引:1  
The current status of contaminant concentrations in Casco Bay, decadal trends of these contaminants and changes in their geographical distribution are assessed using sediment samples collected approximately 10 years apart. In general, regulated contaminants appeared to be decreasing in concentration. Total PAH and dioxins/furans concentrations did not significantly change over this period. Total organochlorine pesticides, 4,4-DDE, 4,4-DDD, total DDT, PCB, tributyltin and total butyltin decreased in concentration. Trace element concentrations in sediments decreased at the majority of the sampling sites for chromium, nickel, and selenium while arsenic, cadmium, copper, lead, mercury, silver, and zinc remained relatively constant. None of the contaminants measured has increased by more than a factor of 2. Selected sites located in the Inner Bay, where concentrations are higher and new inputs were more likely, showed increased concentrations of contaminants. Most contaminants were not found at concentrations expected to adversely affect sediment biota based on ERL/ERM guidelines.  相似文献   

4.
5.
Over 400tons of Pb enters Swiss soils annually at some 2000 military shooting ranges (MSRs). We measured elements in the leaves of 10 plant species and associated rhizospheric soil on the stop butt of a disused MSR. The geometric mean concentrations of Pb, Sb, Cu, Ni in rhizospheric soils were 10,171mg/kg, 5067mg/kg, 4125mg/kg and 917mg/kg. Some species contained Pb, Cu and Ni, above concentrations (30mg/kg, 25mg/kg and 50mg/kg) shown to be toxic to livestock. Most contaminants in leaves resulted from surface deposition. However, at soil Pb concentrations >60,000mg/kg, Equisetum arvense and Tussilago farfara took up >1000mg/kg Pb into the leaves. These plants are not hyperaccumulators, having <100mg/kg Pb in leaves at lower soil concentrations. Removal of soil with more than 30,000 Pb, from which one could smelt this metal to offset remediation costs, followed by revegetation, would minimise dust and hence leaf-borne contaminants.  相似文献   

6.
The benthic ecosystem functioning is a rarely applied holistic approach that integrates the main chemical and biological features of the benthic domain with the key processes responsible for the flux of energy and C through the system. For the first time, such conceptual model, with an emphasis on the heterotrophic pathways, has been applied to the sediments at four stations within one of the most polluted coastal areas in Italy: the Mar Piccolo of Taranto. The functioning of the benthic ecosystem was different according to the investigated site. Nearby the military arsenal, i.e., the main source of organic contaminants and heavy metals, the system seemed inhibited at all the investigated structural and functional levels. Slow microbial processes of C reworking together with very limited densities of benthic fauna suggested a modest transfer of C both into a solid microbial loop and to the higher trophic levels. On the other hand, the ingression of marine water through the “Navigabile” channel seemed to stimulate the organic matter degradation and, consequently, the proliferation of meiofauna and macrofauna. In the innermost part of the basin, the system functioning, to some extent, is less impacted by contaminants and more influenced by mussel farms. The organic matter produced by these bivalves fueled faster C reworking by benthic prokaryotes and enhanced the proliferation of filter feeders.  相似文献   

7.
The nature and extent of pollution was determined at the site of a former pinetar manufacturer. Compound distributions at various areas about the site revealed that, in addition to groundwater leaching of soluble phenolics, insoluble contaminants were spread by a dike-breach incident and subsequent construction activities. Differences in the patterns of chemicals in various wells suggested that more than one source of pollution occurred. The distribution of compounds about the site indicated that a general clean-up would not be cost-effective. Placement of an interceptor to collect groundwater seepage that contaminates surface water is being considered as an alternative.  相似文献   

8.
Four water samples collected using standard depth and width water-column sampling methodology were compared to an innovative passive, in situ, sampler (the polar organic chemical integrative sampler or POCIS) for the detection of 96 organic wastewater-related contaminants (OWCs) in a stream that receives agricultural, municipal, and industrial wastewaters. Thirty-two OWCs were identified in POCIS extracts whereas 9-24 were identified in individual water-column samples demonstrating the utility of POCIS for identifying contaminants whose occurrence are transient or whose concentrations are below routine analytical detection limits. Overall, 10 OWCs were identified exclusively in the POCIS extracts and only six solely identified in the water-column samples, however, repetitive water samples taken using the standard method during the POCIS deployment period required multiple trips to the sampling site and an increased number of samples to store, process, and analyze. Due to the greater number of OWCs detected in the POCIS extracts as compared to individual water-column samples, the ease of performing a single deployment as compared to collecting and processing multiple water samples, the greater mass of chemical residues sequestered, and the ability to detect chemicals which dissipate quickly, the passive sampling technique offers an efficient and effective alternative for detecting OWCs in our waterways for wastewater contaminants.  相似文献   

9.
Walsh ME  Ramsey CA  Jenkins TF 《Chemosphere》2002,49(10):1267-1273
Efforts to characterize the surface soil contamination on military training ranges have been compromised by the inability to obtain representative subsamples of soils submitted to analytical laboratories for determination of explosives residues. Two factors affecting subsampling error for explosives residues were examined using soils collected from hand grenade and anti-tank ranges. These factors were increased subsample size and particle size reduction prior to subsampling of soils. Increasing the subsample size from 2 to 50 g did not reduce the soil subsampling error because of the extreme heterogeneous distribution of the solid contaminants. Alternatively, particle size reduction by machine grinding on a ring mill reduced subsampling error to less than 10% relative standard deviation for replicate analyses using 10-g subsamples.  相似文献   

10.
Atmospheric samples of precipitation and ambient air were collected at a single site in Washington, DC, for 7 months (for ambient air samples) and 1 year (for wet deposition samples) and analyzed for arsenic, cadmium, chromium and lead. The ranges of heavy metal concentrations for 6-day wet deposition samples collected over the 1-year period were 0.20-1.3 microg/l, 0.060-5.1 microg/l, 0.062-4.6 microg/l and 0.11-3.2 microg/l for arsenic, cadmium, chromium and lead, respectively, with a precision better than 5% for more than 95% of the measurements. The ranges of heavy metal concentrations for the 6-day ambient air samples were 0.800-15.7 ng/m(3), 1.50-30.0 ng/m(3), 16.8-112 ng/m(3), and 2.90-137 ng/m(3) for arsenic, cadmium, chromium and lead, respectively, with a precision better than 10%. The spread in the heavy metal concentration over the observation period suggests a high seasonal variability for heavy metal content in both ambient air and wet deposition samples.  相似文献   

11.
Since the so-called emerging contaminants were established as a new group of pollutants of environmental concern, a great effort has been devoted to the knowledge of their distribution, fate and effects in the environment. After more than 20 years of work, a significant improvement in knowledge about these contaminants has been achieved, but there is still a large gap of information on the growing number of new potential contaminants that are appearing and especially of their unpredictable transformation products. Although the environmental problem arising from emerging contaminants must be addressed from an interdisciplinary point of view, it is obvious that analytical chemistry plays an important role as the first step of the study, as it allows establishing the presence of chemicals in the environment, estimate their concentration levels, identify sources and determine their degradation pathways. These tasks involve serious difficulties requiring different analytical solutions adjusted to purpose. Thus, the complexity of the matrices requires highly selective analytical methods; the large number and variety of compounds potentially present in the samples demands the application of wide scope methods; the low concentrations at which these contaminants are present in the samples require a high detection sensitivity, and high demands on the confirmation and high structural information are needed for the characterisation of unknowns. New developments on analytical instrumentation have been applied to solve these difficulties. Furthermore and not less important has been the development of new specific software packages intended for data acquisition and, in particular, for post-run analysis. Thus, the use of sophisticated software tools has allowed successful screening analysis, determining several hundreds of analytes, and assisted in the structural elucidation of unknown compounds in a timely manner.  相似文献   

12.
A large-scale groundwater contamination characterises the Pleistocene groundwater system of the former industrial and abandoned mining region Bitterfeld/Wolfen, Eastern Germany. For more than a century, local chemical production and extensive lignite mining caused a complex contaminant release from local production areas and related dump sites. Today, organic pollutants (mainly organochlorines) are present in all compartments of the environment at high concentration levels. An integrated methodology for characterising the current situation of pollution as well as the future fate development of hazardous substances is highly required to decide on further management and remediation strategies. Data analyses have been performed on regional groundwater monitoring data from about 10 years, containing approximately 3,500 samples, and up to 180 individual organic parameters from almost 250 observation wells. Run-off measurements as well as water samples were taken biweekly from local creeks during a period of 18 months. A kriging interpolation procedure was applied on groundwater analytics to generate continuous distribution patterns of the nodal contaminant samples. High-resolution geological 3-D modelling serves as a database for a regional 3-D groundwater flow model. Simulation results support the future fate assessment of contaminants. A first conceptual model of the contamination has been developed to characterise the contamination in regional surface waters and groundwater. A reliable explanation of the variant hexachlorocyclohexane (HCH) occurrence within the two local aquifer systems has been derived from the regionalised distribution patterns. Simulation results from groundwater flow modelling provide a better understanding of the future pollutant migration paths and support the overall site characterisation. The presented case study indicates that an integrated assessment of large-scale groundwater contaminations often needs more data than only from local groundwater monitoring. The developed methodology is appropriate to assess POP-contaminated mega-sites including, e.g. HCH deposits. Although HCH isomers are relevant groundwater pollutants at this site, further organochlorine pollutants are present at considerably higher levels. The study demonstrates that an effective evaluation of the current situation of contamination as well as of the related future fate development requires detailed information of the entire observed system.  相似文献   

13.
Fine organic aerosols collected at the Great Smoky Mountain National Park, Tennessee (USA) during 15 July –25 August 1995 as part of the Southeastern Aerosol and Visibility Study (SEAVS) were chemically characterized. The water-soluble organic species (WSOS) often dominated over the solvent-soluble organic species (SSOS) at this remote, humid sampling site, contributing 76–98% of the total identified organic mass in 17 out of the 21 daytime samples analyzed. Nighttime samples tended to have slightly larger concentrations of total SSOS than the daytime, with nocturnal/diurnal organic mass ratios greater than 1.0 in 7 out of the 10 paired samples. However, for total WSOS mass, the nocturnal-to-diurnal ratios were less than 0.3 in 7 out of the 10 paired samples, reflecting much more substantial depletion and/or less production of the more polar organics during nighttime. Based on identified species, the organic-mass-to-organic-carbon (OM–OC) ratios at the SEAVS site are estimated as 2.0, 2.2, and 1.3 for the daytime total organics, WSOS, and SSOS, respectively. For the nighttime samples, the OM–OC ratio for total identified organics is estimated to be 1.8, slightly lower than the daytime ratio due to the smaller mass fraction of WSOS present at night.  相似文献   

14.
Riefler RG  Medina VF 《Chemosphere》2006,63(6):1054-1059
Nitroglycerine (NG) and 2,4-dinitrotoluene (2,4-DNT) are propellants often found in soil and groundwater at military firing ranges. Because of the need for training with live ammunition, control or cleanup of these contaminants may be necessary for the continued use of these firing ranges. One inexpensive approach for managing sites exposed to these contaminants is the use phytoremedation, particularly using common or native grasses. In this study, the uptake of NG and 2,4-DNT from water by three common grasses, yellow nutsedge (Cyperus escalantus), yellow foxtail (Setaria glauca), and common rush (Juncus effusus), was investigated using hydroponic reactors. Rapid removal from solution by all grasses was observed, with yellow nutsedge removal rates being the highest. NG or 2,4-DNT accumulated in the tissues in all of the plants, except yellow foxtail did not accumulate NG. Higher concentrations were observed in killed roots, demonstrating the presence of plant-based enzymes actively transforming the contaminants. Yellow nutsedge was also grown in 2,4-DNT spiked soil. Significant uptake into the plants roots and leaves was observed and concentrations in the soil decreased rapidly, although 2,4-DNT concentration also decreased in the unplanted controls. In summary, the three grasses tested appear to be good candidates for phytoremediation of propellant contamination.  相似文献   

15.
Little is known about the concentrations, deposition rates, and effects of nitrogenous and sulfurous compounds in photochemical smog in the San Bernardino National Forest (SBNF) in southern California. Dry deposition of NO(3)(-) and NH(4)(+) to foliage of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) was correlated (R = 0.83-0.88) with historical average hourly O(3) concentations at 10 sites across an O(3) gradient in the SBNF. Mean deposition fluxes of NO(3)(-) to ponderosa and Jeffrey pine branches were 0.82 nmol M(-2)s(-1) at Camp Paivika (CP), a high-pollution site, and 0.19 nmol m(-2) s(-1) at Camp Osceola (CAO), a low-pollution site. Deposition fluxes of NH(4)(+) were 0.32 nmol m(-2) s(-1) at CP and 0.17 nmol m(-2) s(-1) at CAO, while mean values for SO(4)(2-) were 0.03 at CP and 0.02 nmol m(-2) s(-1) at CAO. Deposition fluxes to paper and nylon filters were higher in most cases than fluxes to pine branches at the same site. The results of this study suggest that an atmospheric concentration and deposition gradient of N and S compounds occurs along with the west-east O(3) gradient in the SBNF. Annual stand-level dry deposition rates for S and N at CP and CAO were estimated. Further studies are needed to determine if high N deposition loads in the SBNF significantly affect plant/soil nutrient relations, tree health, and the response of ponderosa pine to ozone.  相似文献   

16.
Knowledge of the factors that influence the diffusion of contaminants, such as the diffusivity and the connected porosity, is crucial to modeling the long-term fate and transport of contaminants in subsurface systems with small or negligible advective flow, such as in fractured crystalline rock. Fractured rock is naturally heterogeneous, and hence, understanding the diffusivity of a molecule through this material (or the formation factor of the medium) becomes a complex problem, with critical concerns about the scale of laboratory measurements and about the spatial variability of these measurements relative to the scale needed for fate and transport modeling. This study employed both electrical and tracer-based laboratory methods to investigate the effects of scale and pore system connectivity on the diffusivity for volcanic matrix rock derived from the study site, a former underground nuclear test site at Amchitka Island, Alaska. The results of these investigations indicate a relatively well-connected pore system with scale effects generally limited to approximately 6 cm lengths and well-correlated to observed heterogeneous features. An important conclusion resulting from this study, however, is that there is a potential for the estimated diffusivity to be misrepresented by an order of magnitude if multiple samples or longer sample lengths are not used. Given the relatively large number of measurements resulting from these investigations, an analysis of the probability density function (PDF) of the diffusivity was possible. The PDF of the diffusivity was shown to generally follow a normal distribution for individual geologic layers. However, when all of the geologic layers are considered together, the distribution of the subsurface as a whole was shown to follow a lognormal distribution due to the order of magnitude differences amongst the layers. An understanding of these distributions is essential for future stochastic modeling efforts.  相似文献   

17.
Triolein-containing semipermeable membrane devices (SPMDs) were employed as passive samplers to provide data on the bioavailable fraction of organic, waterborne, organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs) in streams flowing through a highly polluted industrial area of Bitterfeld in Saxony-Anhalt, Germany. The contamination of the region with organic pollutants originates in wastewater effluents from the chemical industry, from over one-hundred years of lignite exploitation, and from chemical waste dumps. The main objective was to characterise time-integrated levels of dissolved contaminants, to use them for identification of spatial trends of contamination, and their relationship to potential pollution sources. SPMDs were deployed for 43 days in the summer of 1998 at four sampling sites. The total concentration of pollutants at sampling sites was found to range from a low of 0.8 microgram/SPMD to 25 micrograms/SPMD for PAHs, and from 0.4 microgram/SPMD to 22 micrograms/SPMD for OCPs, respectively. None of the selected PCB congeners was present at quantifiable levels at any sampling site. A point source of water pollution with OCPs and PAHs was identified in the river system considering the total contaminant concentrations and the distribution of individual compounds accumulated by SPMDs at different sampling sites. SPMD-data was also used to estimate average ambient water concentrations of the contaminants at each field site and compared with concentrations measured in bulk water extracts. The truly dissolved or bioavailable portion of contaminants at different sampling sites ranged from 4% to 86% for the PAHs, and from 8% to 18% for the OCPs included in the estimation. The fraction of individual compounds found in the freely dissolved form can be attributed to the range of their hydrophobicity. In comparison with liquid/liquid extraction of water samples, the SPMD method is more suitable for an assessment of the background concentrations of hydrophobic organic contaminants because of substantially lower method quantification limits. Moreover, contaminant residues sequestered by the SPMDs represent an estimation of the dissolved or readily bioavailable concentration of hydrophobic contaminants in water, which is not provided by most analytical approaches.  相似文献   

18.
Field and laboratory studies were conducted to estimate concentration of potential contaminants from landfill in the underlying groundwater, leachate, and surface water. Samples collected in the vicinity of the landfill were analyzed for physiochemical parameters, organic contaminants, and toxic heavy metals. Water quality results obtained were compared from published data and reports. The results indicate serious groundwater and surface water contamination in and around the waste disposal site. Analysis of the organic samples revealed that the site contains polychlorinated biphenyls and other organo-chlorine chemicals, principally chloro-benzenes. Although the amount of PCB concentration discovered was not extreme, their presence indicates a potentially serious environmental threat. Elevated concentrations of lead, copper, nickel, manganese, cadmium, and cobalt at the downgradient indicate that the contamination plume migrated further from the site, and the distribution of metals and metals containing wastes in the site is nonhomogeneous. These results clearly indicate that materials are poorly contained and are at risk of entering the environment. Therefore, full characterization of the dump contents and the integrity of the site are necessary to evaluate the scope of the problem and to identify suitable remediation options.  相似文献   

19.
ABSTRACT

A methodology is presented for estimating the probability that particular classes of environmental contaminants will be of concern at brownfield redevelopment sites. These probabilities are predicted by a logistics model that is based on qualitative information about site history and status. This qualitative information comprises data that would be collected through a Phase I Environmental Site Assessment (ESA), including historic site use, current use and ownership status, and the nature of adjacent properties. The model is fit and demonstrated using a set of 59 former industrial sites in southwestern Pennsylvania that were collected from the files of the Pennsylvania Department of Environmental Protection (PADEP). Predictive models are developed for exceedances of contaminants as grouped into the following classes: metals, chlorinated hydrocarbons, fuel hydrocarbons, and PCBs. A procedure for estimating the parametric uncertainty of the model predictions is also illustrated. This method can serve as a starting point for more effective usage of existing Phase I ESA information and for evaluation of the benefit of obtaining additional site information. By increasing the decision-making value of existing (or inexpensive) data, this method can help to reduce the information asymmetry that may be an obstacle to redevelopment.  相似文献   

20.
Eight soil samples from five wells of a former gas plant site differing in the contamination with BTEX and PAHs as well as the nutrient content were investigated by soil respiration measurements. The basal, glucose as well as NH4+ and PO4(3-) induced cumulative oxygen consumption and carbon dioxide production in 72 and 120 h were determined and additionally the maximal turnover rates and the limitation quotients were calculated. Without additional carbon source only one of five investigated samples was clearly nutrient limited. After glucose supplementation four of seven investigated samples showed nutrient limitation that was in accordance with the available ammonium and phosphorous content. BTEX and PAHs did not exhibit an inhibiting effect on the respiration rate. In contrast, BTEX containing samples exhibited the highest oxygen consumption indicating biodegradation of the contaminants. The results show that oxygen consumption and carbon dioxide production as well as the kinetic of these processes are all informative parameters characterizing the whole microbial respiration potential and their nutrient limitation in soil samples. Therefore this fast respirometric method can be used for the decision if further detailed studies of the bioremediation are useful and if nutrient supplementation is recommended to enhance natural attenuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号