首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
The habitat evaluation procedures (HEP), developed by the US Fish and Wildlife Service, are widely used in the United States to determine the impacts of major construction projects on fish and wildlife habitats. HEP relies heavily on habitat suitability index (HSI) models that use measurements of important habitat characteristics to rate habitat quality for a species on a scale of 0 (unsuitable) to 1.0 (optimal). This report describes a method to simplify existing HSI models to reduce the time and expense involved in sampling habitat variables. Simplified models for three species produced HSI values within 0.2 of those predicted by the original models 90% of the time. Simplified models are particularly useful for rapid habitat inventories and evaluations, wildlife management, and impact assessments in extensive areas or with limited time and personnel.  相似文献   

2.
Water quality and stream habitat in agricultural watersheds are under greater scrutiny as hydrologic pathways are altered to increase crop production. Ditches have been traditionally constructed to remove water from agricultural lands. Little attention has been placed on alternative ditch designs that are more stable and provide greater habitat diversity for wildlife and aquatic species. In 2009, 1.89 km of a conventional drainage ditch in Mower County, Minnesota, was converted to a two‐stage ditch (TSD) with small, adjacent floodplains to mimic a natural system. Cross section surveys, conducted pre‐ and post‐construction, generally indicate a stable channel with minor adjustments over time. Vegetation surveys showed differences in species composition and biomass between the slopes and the benches, with changes ongoing. Longitudinal surveys demonstrated a 12‐fold increase in depth variability. Fish habitat quality improved with well‐sorted gravel riffles and deeper pool habitat. The biological response to improved habitat quality was investigated using a Fish Index of Biological Integrity (FIBI). Our results show higher FIBI scores post‐construction with scores more similar to natural streams. In summary, the TSD demonstrated improvements in riparian and instream habitat quality and fish communities, which showed greater fish species richness, higher percentages of gravel spawning fish, and better FIBI scores. This type of management tool could benefit ditches in other regions where gradient and geology allow.  相似文献   

3.
ABSTRACT: We review published analyses of the effects of climate change on goods and services provided by freshwater ecosystems in the United States. Climate-induced changes must be assessed in the context of massive anthropogenic changes in water quantity and quality resulting from altered patterns of land use, water withdrawal, and species invasions; these may dwarf or exacerbate climate-induced changes. Water to meet instream needs is competing with other uses of water, and that competition is likely to be increased by climate change. We review recent predictions of the impacts of climate change on aquatic ecosystems in eight regions of North America. Impacts include warmer temperatures that alter lake mixing regimes and availability of fish habitat; changed magnitude and seasonality of runoff regimes that alter nutrient loading and limit habitat availability at low flow; and loss of prairie pothole wetlands that reduces waterfowl populations. Many of the predicted changes in aquatic ecosystems are a consequence of climatic effects on terrestrial ecosystems; shifts in riparian vegetation and hydrology are particularly critical. We review models that could be used to explore potential effects of climate change on freshwater ecosystems; these include models of instream flow, bioenergetics models, nutrient spiraling models, and models relating riverine food webs to hydrologic regime. We discuss potential ecological risks, benefits, and costs of climate change and identify information needs and model improvements that are required to improve our ability to predict and identify climate change impacts and to evaluate management options.  相似文献   

4.
Arid zone rivers have highly variable flow rates, and flood control projects are needed to protect adjacent property from flood damage. On the other hand, riparian corridors provide important wildlife habitat, especially for birds, and riparian vegetation is adapted to the natural variability in flows on these rivers. While environmental and flood control goals might appear to be at odds, we show that both goals can be accommodated in the Limitrophe Region (the shared border between the United States and Mexico) on the Lower Colorado River. In 1999, the International Boundary and Water Commission proposed a routine maintenance project to clear vegetation and create a pilot channel within the Limitrophe Region to improve flow capacity and delineate the border. In 2000, however, Minute 306 to the international water treaty was adopted, which calls for consideration of environmental effects of IBWC actions. We conducted vegetation and bird surveys within the Limitrophe and found that this river segment is unusually rich in native cottonwood and willow trees, marsh habitat, and resident and migratory birds compared to flow-regulated segments of river. A flood-frequency analysis showed that the existing levee system can easily contain a 100 year flood even if vegetation is not removed, and the existing braided channel system has greater carrying capacity than the proposed pilot channel.  相似文献   

5.
6.
ABSTRACT: After input from various interested agencies, three miles of creek were relocated to facilitate the construction of Interstate 70 through Tenmile Canyon west of Denver. The 0.5.million dollar project was designed to provide fish habitat of equal value to that present before construction or, if possible, to improve this habitat. Construction techniques were designed to minimize damage to flora and fauna. After the channels were excavated, rock and log fish habitat structures were constructed. Two years after construction, a 4 percent chance flood occurred at the project area which made almost 75 percent of the habitat structures ineffective. Pool-riffle ratios and quantity and quality of spawning areas remained essentially unchanged throughout the period. Population estimates indicated an increase in the number of fish in the postconstruction period compared to preconstruction numbers. Fish biomass estimates for the project area were comparable for the two periods. Aquatic invertebrate populations were unchanged as indicated by comparison of three pre- and postconstruction indices.  相似文献   

7.
ABSTRACT: Water quality was monitored for 17 months during base flow periods in six agricultural watersheds to evaluate the impact of riparian vegetation on suspended solids and nutrient concentrations. In areas without riparian vegetation, both instream algal production and seasonal low flows appeared to be major determinants of suspended solids, turbidity, and phosphorus concentrations. Peak levels of all parameters were reached during the summer when flows were reduced and benthic algal production was high. Similar summer peaks were reached in streams receiving major point inputs but peaks occurred downstream from the input. Instream organic production was less important in regulating water quality in areas with riparian vegetation and permanent flows. Concentrations of suspended solids remained relatively constant, while phosphorus and turbidity increased in association with leaf fall in autumn. Intermittent flow conditions in summer increased the importance of instream organic production in controlling water quality, even when riparian vegetation was present. Efforts to improve water quality in agricultural watersheds during base flow should emphasize maintenance of riparian vegetation and stable flow conditions.  相似文献   

8.
Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.  相似文献   

9.
ABSTRACT: We evaluated the effectiveness of watershed‐scale implementations of best‐management practices (BMPs) for improving habitat and fish attributes in two coldwater stream systems in Wisconsin. We sampled physical habitat, water temperature, and fish communities in multiple paired treatment and reference streams before and after upland (barnyard runoff controls, manure storage, contour plowing, reduced tillage) and riparian (stream bank fencing, sloping, limited rip‐rapping) BMP installation in the treatment subwatersheds. In Spring Creek, BMPs significantly improved overall stream habitat quality, bank stability, instream cover for fish, abundance of cool‐ and coldwater fishes, and abundance of all fishes. Improvements were most pronounced at sites with riparian BMPs. Water temperatures were consistently cold enough to support coldwater fishes such as trout (Salmonidae) and sculpins (Cottidae) even before BMP installation. We observed the first‐time occurrence of naturally reproduced brown trout (Salmo trutta) in Spring Creek, indicating that the stream condition had been improved to be able to partially sustain a trout population. In Eagle Creek and its tributary Joos Creek, limited riparian BMPs led to localized gains in overall habitat quality, bank stability, and water depth. However, because few upland BMPs were installed in the subwatershed there were no improvements in water temperature or the quality of the fish community. Temperatures remained marginal for coldwater fish throughout the study. Our results demonstrate that riparian BMPs can improve habitat conditions in Wisconsin streams, but cannot restore coldwater fish communities if there is insufficient upland BMP implementation. Our approach of studying multiple paired treatment and reference streams before and after BMP implementation proved effective in detecting the response of stream ecosystems to watershed management activities.  相似文献   

10.
Aboriginal land managers have observed that feral Asian water buffalo (Bubalis bubalis Lydekker) are threatening the ecological and cultural integrity of perennial freshwater sources in Arnhem Land, Australia. Here we present collaborative research between the Aboriginal Rangers from Warddeken Land Management Limited and Western scientists which quantified the ground-level impacts of buffalo on seven perennial freshwater springs of the Arnhem Plateau. A secondary aim was to build the capacity of Aboriginal Rangers to self-monitor and evaluate the ecological outcomes of their land management activities. Sites with high buffalo abundance had significantly different ground, ground cover, and water quality attributes compared to sites with low buffalo abundance. The low buffalo abundance sites were characterized by tall herbaceous vegetation and flat ground, whereas wallows, bare ground, and short ungrazed grasses were indicators of sites with high buffalo abundance. Water turbidity was greater when buffalo abundance was high. The newly acquired monitoring skills and derived indicators of buffalo damage will be used by Aboriginal Rangers to assess the ecological outcomes of their future buffalo control efforts on the Arnhem Plateau.  相似文献   

11.
Abstract: The effects of water level fluctuations on fish and other aquatic biota, with an emphasis on winter water withdrawal in northern regions is reviewed. Water demands for population growth and development are adding pressure on water reserves, particularly when coupled with changing climatic conditions. Water level fluctuations can have adverse effects on the environment, most notably to hydrologic and biotic processes ranging in magnitude from the micro‐scale to landscape level. Water level management of lakes and reservoirs can affect all forms of aquatic biota. The severity of effect is dependant on the magnitude, duration and timing of the fluctuation, and the species exposed. In northwestern Canada and northern Alaska, water is withdrawn from water bodies to construct ice‐roads and other winter based developments. Biota in small, isolated water bodies are particularly sensitive to reductions in winter water levels. Water withdrawals can reduce the oxygen available to overwintering fish, while reduced water levels can reduce habitat for fish and furbearers, and freeze littoral areas killing plants, invertebrates, and fish eggs. Regulatory winter water withdrawal thresholds have been developed in the Northwest Territories and Alaska and continue to be refined as new data becomes available. The use of thresholds can help minimize or avoid negative impacts to the environment, particularly fish, from winter water withdrawal activities. Many different factors may influence the effect that winter water withdrawal has on a water body, such as basin shape, substrate and location. More research is warranted to better understand the linkages between anthropogenic and natural water level fluctuations and their combined effect on aquatic ecosystems. A general decision support system is proposed for minimizing risk to aquatic life from winter water withdrawal activities.  相似文献   

12.
Introduced species have created environmental benefits and unanticipated disasters so a priori assessments of species introductions are needed for environmental management. A checklist for assessing impacts of introduced species was developed from studies of introduced species and recommendations for planning introductions. Sterile, triploid grass carp (Ctenopharyngodon idella) are just beginning to be used as a biocontrol agent for the management of aquatic vegetation in open waterways. Potential impacts of grass carp in open systems were identified by reviewing grass carp biology relative to the impact assessment checklist. The potential consequences of introduced grass carp were reviewed for one case study. The case study demonstrated that conclusions about potential impacts and monitoring needs can be made despite incomplete information and uncertainty. Indicators of environmental impact and vulnerability of host systems were grouped into six categories: population control, hybridization, diseases and parasites, habitat alterations, biological effects, and management issues. Triploid grass carp can significantly alter habitat and biological resources through the secondary effects of reductions in aquatic vegetation. Potential impacts and significant uncertainties involve fish dispersions from plant control areas, inability to control vegetation loss, loss of diverse plant communities and their dependent species, and conflicts with human use of the water resource. Adequate knowledge existed to assess most potential consequences of releasing large numbers of triploid grass carp in Guntersville Reservoir, Alabama. However, the assessment of potential impacts indicated that moderate, incremental stockings combined with monitoring of vegetation and biological resources are necessary to control the effects of grass carp and achieve desirable, intermediate plant densities. Cooperators: Auburn University (Alabama Agricultural Experiment Station, Department of Fisheries and Allied Aquacultures, Department of Zoology and Wildlife Sciences), US Fish and Wildlife Service, Alabama Game and Fish Division, and the Wildlife Management Institute.  相似文献   

13.
Wetlands respond to nutrient enrichment with characteristic increases in soil nutrients and shifts in plant community composition. These responses to eutrophication tend to be more rapid and longer lasting in oligotrophic systems. In this study, we documented changes associated with water quality from 1989 to 1999 in oligotrophic Everglades wetlands. We accomplished this by resampling soils and macrophytes along four transects in 1999 that were originally sampled in 1989. In addition to documenting soil phosphorus (P) levels and decadal changes in plant species composition at the same sites, we report macrophyte tissue nutrient and biomass data from 1999 for future temporal comparisons. Water quality improved throughout much of the Everglades in the 1990s. In spite of this improvement, though, we found that water quality impacts worsened during this time in areas of the northern Everglades (western Loxahatchee National Wildlife Refuge [NWR] and Water Conservation Area [WCA] 2A). Zones of high soil P (exceeding 700 mg P kg(-1) dry wt. soil) increased to more than 1 km from the western margin canal into the Loxahatchee NWR and more than 4 km from northern boundary canal into WCA-2A. This doubling of the high soil P zones since 1989 was paralleled with an expansion of cattail (Typha spp.)-dominated marsh in both regions. Macrophyte species richness declined in both areas from 1989 to 1999 (27% in the Loxahatchee NWR and 33% in WCA-2A). In contrast, areas well south of the Everglades Agricultural Area, induding WCA-3A and Everglades National Park (ENP), did not decline during this time. We found no significant decadal change in plant community patterns from 1989 and 1999 along transects in southern WCA-3A or Shark River Slough (ENP). Our 1999 sampling also included a new transect in Taylor Slough (ENP), which will allow change analysis here in the future. Regular sampling of these transects, to verify decadal-scale environmental impacts or improvements, will continue to be an important tool for long-term management and restoration of the Everglades.  相似文献   

14.
Zorn, Troy G., Paul W. Seelbach, and Edward S. Rutherford, 2012. A Regional‐Scale Habitat Suitability Model to Assess the Effects of Flow Reduction on Fish Assemblages in Michigan Streams. Journal of the American Water Resources Association (JAWRA) 48(5): 871‐895. DOI: 10.1111/j.1752‐1688.2012.00656.x Abstract: In response to concerns over increased use and potential diversion of Michigan’s freshwater resources, and the resulting state legislative mandate, an advisory council created an integrated assessment model to determine the potential for water withdrawals to cause an adverse resource impact to fish assemblages in Michigan’s streams. As part of this effort, we developed a model to predict how fish assemblages characteristic of different stream types would change in response to decreased stream base flows. We describe model development and use in this case study. The model uses habitat suitability information (i.e., catchment size, base‐flow yield, and July mean water temperature) for over 40 fish species to predict assemblage structure in an individual river segment under a range of base‐flow reductions. By synthesizing model runs for individual fish species at representative segments for each of Michigan’s 11 ecological stream types, we developed curves describing how typical fish assemblages in each type respond to flow reduction. Each stream type‐specific, fish response curve was used to identify streamflow reduction levels resulting in adverse resource impacts to characteristic fish populations, the regulatory standard. Used together with a statewide map of stream types, our model provided a spatially comprehensive framework for evaluating impacts of flow withdrawals on biotic communities across a diverse regional landscape.  相似文献   

15.
Biological elements, such as benthic macroinvertebrates and fish, have been used in assessing the ecological quality of rivers according to the requirements of the Water Framework Directive. However, the concurrent use of multiple organism groups provides a broader perspective for such evaluations, since each biological element may respond differently to certain environmental variables. In the present study, we assessed the ecological quality of a Greek river (RM4 type), during autumn 2003 and spring 2004 at 10 sites, with benthic macroinvertebrates and fish. Hydromorphological and physicochemical parameters, habitat structure, and riparian vegetation were also considered. Pollution sensitive macroinvertebrate taxa were more abundant at headwaters, which had good/excellent water quality according to the Hellenic Evaluation System (HES). The main river reaches possessed moderate water quality, while downstream sites were mainly characterised as having bad or poor water quality, dominated by pollution-tolerant macroinvertebrate taxa. Macroinvertebrates related strongly to local stressors as chemical degradation (ordination analysis CCA) and riparian quality impairment (bivariate analysis) while fish did not. Fish were absent from the severely impacted lower river reaches. Furthermore, external pathological signs were observed in fish caught at certain sites. A combined use of both macroinvertebrates and fish in biomonitoring programs is proposed for providing a safer assessment of local and regional habitat impairment.  相似文献   

16.
ABSTRACT: Thirteen years of annual habitat and fish sampling were used to evaluate the response of a small warm water stream in eastern Wisconsin to agricultural best management practices (BMPs). Stream physical habitat and fish communities were sampled in multiple reference and treatment stations before, during, and after upland and riparian BMP implementation in the Otter Creek subwatershed of the Sheboygan River watershed. Habitat and fish community measures varied substantially among years, and varied more at stations that had low habitat diversity, reinforcing the notion that the detection of stream responses to BMP implementation requires long term sampling. Best management practices increased substrate size; reduced sediment depth, embeddedness, and bank erosion; and improved overall habitat quality at stations where a natural vegetative buffer existed or streambank fencing was installed as a riparian BMP. There were lesser improvements at locations where only upland BMPs were implemented. Despite the habitat changes, we could not detect significant improvements in fish communities. It is speculated that the species needed to improve the fish community, mainly pollution intolerant species, suckers (Castomidae), and darters (Percidae), had been largely eliminated from the Sheboygan River watershed by broadscale agricultural nonpoint source pollution and could not colonize Otter Creek, even though habitat conditions may have been suitable.  相似文献   

17.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

18.
ABSTRACT: The environmental effects of flood control channel modifications such as clearing and snagging, straightening, enlargement, and/or paving can be quite severe in some cases. Information review reveals that several environmental features have been incorporated into the design, construction, operation, or maintenance of recent flood control channel projects to avoid adverse environmental impacts and enhance environmental quality. Typically, these features have been proposed by conservation agencies and designed with minimal quantitative analysis. Environmental features for channel projects include selective clearing and snagging techniques, channel designs with nonuniform geometry such as single bank modification and floodways, restoration and enhancement of aquatic habitat, improved techniques for placement of excavated material, and revegetation.  相似文献   

19.
The combined influence on the environment of all projects occurring in a single area is evaluated through cumulative impact assessments (CIA), which consider the consequences of multiple projects, each insignificant on its own, yet important when evaluated collectively. Traditionally, future human activities are included in CIA using an analytical platform, commonly based on complex models that supply precise predictions but with reduced accuracy. To compensate for the lack of accuracy in current CIA approaches, we propose a shift in the paradigm governing CIA. The paradigm shift involves a change in the focus of CIA investigations from the detailed analysis of one unlikely future to the identification of the patterns describing multiple potential future changes in the environment. To illustrate the approach, a set of 144 possible and equally likely futures were developed that aimed to identify the potential impacts of forest harvesting and petroleum drilling on the habitat suitability of moose and marten in northeast British Columbia, Canada. The evolution of two measures of habitat suitability (average habitat suitability index and surface of the stands with habitat suitability index >0.5) revealed that the human activities could induce cycles in the habitat dynamics of moose and marten. The planning period of 100 years was separated into three distinct periods following a sinusoidal pattern (i.e., increase - constant - decrease in the habitat suitability measures). The attributes that could induce significant changes in the assessment of environment are the choice of harvesting age and species.  相似文献   

20.
We developed a methodology for biodiversity evaluations within the process of Strategic Environmental Assessment and we applied it to the estimation of the effect of two Regional Plans of Development on all bird species inhabiting the Castilla y León region (northwestern Spain). The methodology is based on the evaluation of the effects of main development actions on the habitat requirements of species. From these evaluations, and from data on the current distribution and population size (number of individuals) of each species, we estimated the most likely pattern of distribution and population size after the full implementation of the plans for each species. The impacts of the plans were quantified as the differences between the pre- and postproject patterns after codifying them to compensate for differences in the quality of the information available among species. Overall, we conclude that the proposed methodology fulfills the requirements for its use within the SEA process as it allows for the assessment of cumulative impacts on every species, highlighting the development directions and the habitat types with major impacts, and ascertaining whether impacts affect species with either low or high conservation and/or economic value. Generalization of the proposed methodology to other regions or species will require wildlife-habitat models adequate for SEA analyses, so that we also propose guidelines for the development and validation of these models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号