首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the use of natural fibers as replacement to man-made fiber in fiber-reinforced composites have increased and opened up further industrial possibilities. Natural fibers have the advantages of low density, low cost, and biodegradability. However, the main disadvantages of natural fibers in composites are the poor compatibility between fiber and matrix and the relative high moisture sorption. Therefore, chemical treatments are considered in modifying the fiber surface properties. In this paper, the different chemical modifications on natural fibers for use in natural fiber-reinforced composites are reviewed. Chemical treatments including alkali, silane, acetylation, benzoylation, acrylation, maleated coupling agents, isocyanates, permanganate and others are discussed. The chemical treatment of fiber aimed at improving the adhesion between the fiber surface and the polymer matrix may not only modify the fiber surface but also increase fiber strength. Water absorption of composites is reduced and their mechanical properties are improved.  相似文献   

2.
新兴污染物BP-3和BP-4的好氧生物降解性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用欧洲经济合作与发展组织(OECD)的生物降解测试标准方法——301F测压呼吸计量法,考察了2-羟基-4-甲氧基二苯甲酮(BP-3)和2-羟基-4-甲氧基二苯甲酮-5-磺酸(BP-4)的好氧生物降解性能,并研究了降解动力学及共代谢现象。实验结果表明:BP-3和BP-4的可生物降解率分别为68.36%和41.34%;根据OECD快速降解性判定标准,BP-3划归为易快速降解物质,而BP-4为不易快速降解物质;两种物质的生物降解可用一级动力学描述,半衰期分别为1.986 d和2.806 d;根据欧盟法规《化学品的注册、评估、授权和限制》(REACH法规),BP-3和BP-4均非持久性物质;与苯甲酸钠共存时,BP-3和BP-4的降解过程均表现出共代谢现象。  相似文献   

3.
用改进聚乙烯醇-硼酸法将活性污泥制成固定化颗粒,考察了改进聚乙烯醇-硼酸法的最佳条件及固定化颗粒的性能。实验结果表明:改进聚乙烯醇-硼酸法的最佳条件为聚乙烯醇质量分数6.5%、包泥比(包埋剂与活性污泥质量比)1.2:1、二氧化硅质量分数1.5%、活性炭质量分数0.3%、海藻酸钠质量分数0.6%;用最佳条件下制得的固定化颗粒处理模拟化工废水,连续运行15d后的COD去除率达90%以上,且固定化颗粒耐冲击负荷和pH变化能力强;固定化颗粒对模拟化工废水的COD去除速率随进水COD的变化曲线类似于米氏方程所描述的反应初速度随底物浓度的变化规律。  相似文献   

4.
Degradation of Cellulose Acetate-Based Materials: A Review   总被引:1,自引:0,他引:1  
Cellulose acetate polymer is used to make a variety of consumer products including textiles, plastic films, and cigarette filters. A review of degradation mechanisms, and the possible approaches to diminish the environmental persistence of these materials, will clarify the current and potential degradation rates of these products after disposal. Various studies have been conducted on the biodegradability of cellulose acetate, but no review has been compiled which includes biological, chemical, and photo chemical degradation mechanisms. Cellulose acetate is prepared by acetylating cellulose, the most abundant natural polymer. Cellulose is readily biodegraded by organisms that utilize cellulase enzymes, but due to the additional acetyl groups cellulose acetate requires the presence of esterases for the first step in biodegradation. Once partial deacetylation has been accomplished either by enzymes, or by partial chemical hydrolysis, the polymer’s cellulose backbone is readily biodegraded. Cellulose acetate is photo chemically degraded by UV wavelengths shorter than 280 nm, but has limited photo degradability in sunlight due to the lack of chromophores for absorbing ultraviolet light. Photo degradability can be significantly enhanced by the addition of titanium dioxide, which is used as a whitening agent in many consumer products. Photo degradation with TiO2 causes surface pitting, thus increasing a material’s surface area which enhances biodegradation. The combination of both photo and biodegradation allows a synergy that enhances the overall degradation rate. The physical design of a consumer product can also facilitate enhanced degradation rate, since rates are highly influenced by the exposure to environmental conditions. The patent literature contains an abundance of ideas for designing consumer products that are less persistent in the outdoors environment, and this review will include insights into enhanced degradability designs.  相似文献   

5.
The purpose of this review is to describe the various aspects of pressure-sensitive adhesives prepared from natural rubber. Pressure-sensitive adhesives (PSAs) adhere instantaneously to a variety of surfaces upon application of slight pressure and can be obtained using different technologies. PSAs are materials that develop tack for low pressures and short contact times. There are number of factors affecting the adhesion property of natural rubber based pressure-sensitive adhesives. In this review, factors affecting adhesion property such as tack, peel and shear are examined in light of their relevance to adhesion in addition to measurement methods of each of the three major adhesion properties. This review paper covers the work being carried out from the last 20 years in the field of natural rubber based pressure sensitive adhesives.  相似文献   

6.
Journal of Polymers and the Environment - Anthocyanins (ACNs) are natural pigments broadly used in the food industry due to their color, antioxidant, and antimicrobial properties, however, these...  相似文献   

7.
The present research explored the role played by water-wash on geopolymerization for the immobilization and solidification of municipal solid waste incineration (MSWI) fly ash. The water-wash pretreatment substantially promoted the early strength of geopolymer and resulted in a higher ultimate strength compared to the counterpart without water-wash.XRD pattern of water-washed fly ash (WFA) revealed that NaCl and KCl were nearly eliminated in the WFA. Aside from geopolymer, ettringite (Ca6Al2(SO4)3(OH)12·26H2O) was formed in MSWI fly ash-based geopolymer (Geo-FA). Meanwhile, calcium aluminate hydrate (Ca2Al(OH)7·3H2O), not ettringite, appeared in geopolymer that was synthesized with water-washed fly ash (Geo-WFA). Leached Geo-WFA (Geo-WFA-L) did not exhibit any signs of deterioration, while there was visual cracking on the surface of leached Geo-FA (Geo-FA-L). The crack may be caused by the migration of K+, Na+, and Cl ions outside Geo-FA and the negative effect from crystallization of expansive compounds can not be excluded. Furthermore, transformation of calcium aluminate hydrate in Geo-WFA to ettringite in Geo-WFA-L allowed the reduction of the pore size of the specimen. IR spectrums suggested that Geo-WFA can supply more stable chemical encapsulation for heavy metals.Static monolithic leaching tests were conducted for geopolymers to estimate the immobilization efficiency. Heavy metal leaching was elucidated using the first-order reaction/diffusion model. Combined with the results from compressive strength and microstructure of samples, the effects of water-wash on immobilization were inferred in this study.  相似文献   

8.
Journal of Polymers and the Environment - The objective of this study was to obtain and characterize Nerol essential oil encapsulated in PCL. The miniemulsion and solvent evaporation method was...  相似文献   

9.
Biodegradation of Agricultural Plastic Films: A Critical Review   总被引:5,自引:0,他引:5  
The growing use of plastics in agriculture has enabled farmers to increase their crop production. One major drawback of most polymers used in agriculture is the problem with their disposal, following their useful life-time. Non-degradable polymers, being resistive to degradation (depending on the polymer, additives, conditions etc) tend to accumulate as plastic waste, creating a serious problem of plastic waste management. In cases such plastic waste ends-up in landfills or it is buried in soil, questions are raised about their possible effects on the environment, whether they biodegrade at all, and if they do, what is the rate of (bio?)degradation and what effect the products of (bio?)degradation have on the environment, including the effects of the additives used. Possible degradation of agricultural plastic waste should not result in contamination of the soil and pollution of the environment (including aesthetic pollution or problems with the agricultural products safety). Ideally, a degradable polymer should be fully biodegradable leaving no harmful substances in the environment. Most experts and acceptable standards define a fully biodegradable polymer as a polymer that is completely converted by microorganisms to carbon dioxide, water, mineral and biomass, with no negative environmental impact or ecotoxicity. However, part of the ongoing debate concerns the question of what is an acceptable period of time for the biodegradation to occur and how this is measured. Many polymers that are claimed to be ‘biodegradable’ are in fact ‘bioerodable’, ‘hydrobiodegradable’, ‘photodegradable’, controlled degradable or just partially biodegradable. This review paper attempts to delineate the definition of degradability of polymers used in agriculture. Emphasis is placed on the controversial issues regarding biodegradability of some of these polymers.  相似文献   

10.
Apart from conventional uses of polysaccharide materials, such as food, clothing, paper packaging and construction, new polysaccharide products and materials have been developed. This paper reviews life cycle assessment (LCA) studies in order to gain insight of the environmental profiles of polysaccharide products (e.g. viscose or natural fibre polymer composites) in comparison with their conventional counterparts (e.g. cotton or petrochemical polymers). The application areas covered are textiles, engineering materials and packing. It is found that for each stage of the life cycle (production, use phase and waste management) polysaccharide-based end products show better environmental profiles than their conventional counterparts in terms of non-renewable energy use (NREU) and greenhouse gas (GHG) emissions. Cotton is an exception, with high environmental impacts that are related to the use of fertilisers, herbicides, pesticides and high water consumption. The available literature for man-made cellulose fibres shows that they allow to reduce NREU and GHG emissions in the fibre production phase. No study has been found for the fabric production and the use phase of man-made cellulose textiles.
Martin K. PatelEmail:
  相似文献   

11.
12.
Journal of Polymers and the Environment - The current scenario of global trends impacts the way in which food is consumed and packed, meaning that change is inevitable and just around the horizon...  相似文献   

13.
Journal of Polymers and the Environment - Plastics are widely used by the community, especially as food packaging. In general, plastic raw materials are polymers which have advantages including...  相似文献   

14.
Pet Waste Management by Chemical Recycling: A Review   总被引:1,自引:0,他引:1  
The paper reviews the problem due to the use and disposal of synthetic polymers to the environment and its solutions; in particular poly (ethylene terphthalate). Wide spread application and non-biodegradability of the PET creates huge amounts of waste and disposal, tend to a serious problem. The most important cause for recycling and reprocessing the waste PET has arisen from the awareness and concern for environmental pollution. To manage this various methods of polymer recycling has been proposed. Among them chemical recycling, i.e. hydrolysis, methanolysis, glycolysis and aminolysis are reviewed in detail. Appropriate technology and waste disposal procedures based on the socio-economic aspect to solve this problem are suggested.  相似文献   

15.
Plastics are present in a lot of aspects of everyday life. They are very versatile and resistant to microbial attack. Polyurethanes are used in several industries and are divided in polyester and polyether polyurethanes and there are different types among them. Despite their microbial resistance, they are susceptible to the attack of fungi and bacteria but the mechanism to elucidate its biodegradation are unknown. There are reports from bacteria and fungi that are capable of degrading polyurethane but the studies about the enzymes that attack the plastic are focused on bacterial enzymes only. The enzymes reported are of type esterase and protease mainly since these enzymes are very unspecific and can recognize some regions in the polyurethane molecule and hydrolyze it. Fungal enzymes have been studied prior the 1990s decade but recently, some authors report the use of filamentous fungi to degrade polyurethane and also report some characteristics of the enzymes involved in it. This review approaches polyurethane biodegradation by focusing on the enzymes reported to date.  相似文献   

16.
Journal of Polymers and the Environment - In recent decades, the global accumulation of plastics and the resulting pollution, as well as the increase in the price of oil, have driven studies aimed...  相似文献   

17.
Journal of Polymers and the Environment - Recycling of polymers is one of the alternatives to reduce the impact of polymers presence on the environmental. However, the contaminants, defined as...  相似文献   

18.
Journal of Polymers and the Environment - Green tea extract was encapsulated in cyclodextrin to form an inclusion complex. Fourier transform infrared, X-ray diffraction, and 1H-nuclear magnetic...  相似文献   

19.
The porous polyvinylalcohol (PVA) hydrogel was prepared by chemical crosslinking in the saturated boric acid solution with sodium bicarbonate (SBC) as porogen. It was found that addition of SBC decreased the mechanical strength of the gel beads, while the gel permeability was improved. The equilibrium swelling rate and the swelling rate constant k of gel beads increased significantly by addition of SBC. Most of water in PVA hydrogel was in the form of free water and freezing bound water. With increasing SBC content, the total water content of the gel increased, in which the free water content increased remarkably, due to the formation of a large number of pores, and in the meantime, n values, characterizing the mole content of non-freezing bound water, were also improved greatly, indicating of the enhancement of the interaction between PVA molecules and water molecules. SEM observation showed that by adding SBC, many pores formed on the surface and inside gels, which provided channels for microbial metabolites. Microorganism could be successfully entrapped in the porous PVA beads, and addition of SBC made COD removal rate of the gel beads increase significantly.  相似文献   

20.
The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号