首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   

2.
Degradation of chlorinated ethenes under aerobic conditions has been reported using a cometabolic pathway. A site in Illinois had shallow contamination and sandy soils, which in combination created aerobic conditions. The aerobic conditions prevented the degradation of chlorinated ethenes by reductive dechlorination. Biodegradation of chloroethenes under aerobic conditions does not occur naturally at all sites; however, it can be enhanced if microorganisms capable of cometabolic degradation are introduced into the soil. In this study, trichloroethene (TCE) removal in the soil was enhanced by the injection of a commercially available microbial inoculum (CL‐OUT® inoculum, CL‐Solutions, Cincinnati, OH) and nutrients and was compared to chlorinated ethene removal in soil that had received nutrients only and soil that had received activated sludge and nutrients. Trichloroethene removal was measured after one week, seven weeks, and eleven weeks. After one week, no significant TCE removal had occurred in any of the test microcosms. After seven weeks, a slight decrease in TCE levels accompanied by an increase in cis‐1,2‐dichloroethene (cis‐1,2‐DCE) was seen in the microcosms that had received CL‐OUT®. After 11 weeks, a marked decrease in TCE levels was observed in the microcosms that had received CL‐OUT®. No significant TCE decrease was observed in any of the other microcosms. These data suggest that organisms capable of aerobic TCE degradation were not present at the site; however, the addition of an inoculum containing such organisms enabled aerobic degradation to occur. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
The potential application of enhanced in situ bioremediation (EISB) for treatment of a plume containing high concentrations of 1,2‐dichloroethane (1,2‐DCA), as well as lower concentrations of other chlorinated ethanes, chlorinated methanes, and chlorinated ethenes was evaluated through the implementation of four field trials. The field trials confirmed that EISB is an effective technology for treating multiple contaminants, with estimated mass removal rates on the order of several kilograms per day and groundwater concentration reductions nearing 100 percent of the initial concentrations. The field trials also demonstrated that engineering controls could be effectively used to overcome potential inhibitions related to high concentrations of 1,2‐DCA. © 2008 Wiley Periodicals, Inc.  相似文献   

4.
This article presents a case study of the source‐area treatment of tetrachloroethene (PCE) in a low‐permeability formation using zero‐valent iron (ZVI). Evidence of the stimulation of biological reduction processes within the treatment zone occurred. Pneumatic fracturing and injection of microscale ZVI slurry in the overburden and weathered bedrock zones was performed at a commercial brownfields redevelopment site in Maryland. A 20,000‐square‐foot source area impacted with PCE at concentrations greater than 15,000 µg/L was treated at depths ranging from 10 to 70 feet bgs. An average ZVI dosage of 0.0024 iron‐to‐soil mass ratio within the overburden zone led to a 75 percent decrease in PCE mass in less than one year. For the weathered bedrock zone, an average 0.0045 iron‐to‐soil mass ratio resulted in a 92 percent decrease in PCE mass during the same period. The reducing environment and hydrogen generated by the ZVI may have stimulated Dehalobacter populations, as evidenced by concentrations up to 104 cells per milliliter measured within the treatment area despite a groundwater pH as high as 9. The biological reductive dechlorination of the chlorinated ethenes explains the temporary increase in trichloroethene and cis‐1,2‐dichloroethene concentrations. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The chlorinated volatile organic compounds (CVOCs), tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA), often found as commingled contaminants of concern (COCs) in groundwater, can degrade via a variety of biotic and abiotic reductive pathways. In situ remediation of a groundwater contaminant source area containing commingled 1,1,1‐TCA, PCE, and TCE was conducted using a combined remedy/treatment train approach. The first step was to create geochemically reducing conditions in the source area to degrade the CVOCs to lesser chlorinated CVOCs (i.e., 1,1‐dichloroethane [1,1‐DCA], 1,1‐dichlorethene [1,1‐DCE], cis‐1,2‐dichoroethene [cis‐1,2‐DCE], and vinyl chloride [VC]) via enhanced reductive dechlorination (ERD). Carbon substrates were injected to create microbial‐induced geochemically reducing conditions. An abiotic reductant (zero‐valent iron [ZVI]) was also used to further degrade the CVOCs, minimizing the generation of 1,1‐DCE and VC, and co‐precipitate temporarily mobilized metals. An in situ aerobic zone was created downgradient of the treatment zone through the injection of oxygen. Remaining CVOC degradation products and temporarily mobilized metals (e.g., iron and manganese) resulting from the geochemically reducing conditions were then allowed to migrate through the aerobic zone. Within the aerobic zone, the lesser chlorinated CVOCs were oxidized and the solubilized metals were precipitated out of solution. The injection of a combination of carbon substrates and ZVI into the groundwater system at the site studied herein resulted in the generation of a geochemically reducing subsurface treatment zone that has lasted for more than 4.5 years. Mass concentrations of total CVOCs were degraded within the treatment zone, with near complete transformation of chlorinated ethenes and a more than 90 percent reduction of CVOC mass concentrations. Production of VC and 1,1‐DCE has been minimized through the combined effects of abiotic and biological processes. CVOC concentrations have declined over time and temporarily mobilized metals are precipitating out of the dissolved phase. Precipitation of the dissolved metals was mitigated using the in situ oxygenation system, also resulting in a return to aerobic conditions in downgradient groundwater. Chloroethane (CA) is the dominant CVOC degradation product within the treatment zone and downgradient of the treatment zone, and it is expected to continue to aerobically degrade over time. CA did not accumulate within and near the aerobic oxygenation zone. The expectations for the remediation system are: (1) the concentrations of CVOCs (primarily in the form of CA) will continue to degrade; (2) total organic carbon concentrations will continue to decline to pre‐remediation levels; and, (3) the groundwater geochemistry will experience an overall trend of transitioning from reducing back to pre‐remediation mildly oxidizing conditions within and downgradient of the treatment zone.  相似文献   

6.
Field sampling and testing were used to investigate the relationship between baseline geochemical and microbial community data and in situ reductive dechlorination rates at a site contaminated with trichloroethene (TCE) and carbon tetrachloride (CTET). Ten monitoring wells were selected to represent conditions along groundwater flow paths from the contaminant source zone to a wetlands groundwater discharge zone. Groundwater samples were analyzed for a suite of geochemical and microbial parameters; then push‐pull tests with fluorinated reactive tracers were conducted in each well to measure in situ reductive dechlorination rates. No exogenous electron donors were added in these tests, as the goal was to assess in situ reductive dechlorination rates under natural attenuation conditions. Geochemical data provided preliminary evidence that reductive dechlorination of TCE and CTET was occurring at the site, and microbial data confirmed the presence of known dechlorinating organisms in groundwater. Push‐pull tests were conducted using trichlorofluoroethene (TCFE) as a reactive tracer for TCE and, in one well, trichlorofluoromethane (TCFM) as a reactive tracer for CTET. Injected TCFE was transformed to cis‐ and trans‐dichlorofluoroethene and chlorofluoroethene, and, in one test, injected TCFE was completely dechlorinated to fluoroethene (FE). In situ TCFE transformation rates ranged from less than 0.005 to 0.004/day. In the single well tested, injected TCFM was transformed in situ to dichlorofluoromethane and chlorofluoromethane; the TCFM transformation rate was estimated as 0.001/day. The results indicate that it is possible to use push‐pull tests with reactive tracers to directly detect and quantify reductive dechlorination of chlorinated ethenes and ethanes under monitored natural attenuation conditions, which has not previously been demonstrated. Transformation rate estimates obtained with these techniques should improve the accuracy of contaminant transport modeling. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
An optimized “Three‐Dimensional Compound Specific Isotope Analysis (3D‐CSIA)'' investigation was conducted at a chlorinated hydrocarbon–contaminated site in order to (1) determine if multiple onsite sources of groundwater contamination existed and (2) demonstrate the cost‐effectiveness of applying isotope fingerprinting at such a complex contaminated site. Previous groundwater investigations identified chlorinated hydrocarbons at levels that significantly exceed drinking‐water standards but failed to determine the source(s) of contamination due to the lack of vadose‐zone contamination and the absence of groundwater contaminants in shallow portions of the surficial aquifer. To better understand the contaminant source(s), groundwater samples were taken and tested for both the presence of chlorinated hydrocarbons and their isotopic signatures of 13C/12C, 37Cl/35Cl, and 2H/1H. A site investigation with an optimized 3D‐CSIA approach revealed multiple chlorinated hydrocarbon releases from different sources, which was also cost‐effective considering the new lines of evidence of target contaminants obtained with the 3D‐CSIA approach instead of any traditional fingerprinting approaches. In addition, the 3D‐CSIA results inferred in situ bioremediation of chlorinated hydrocarbons would be feasible at the site. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Demonstrating intrinsic bioremediation requires not only that the right types of evidence be gathered, but also that those data be analyzed at an appropriate level of detail and presented in a manner that clearly illustrates the key trends to the target audience. The goal of this study was to develop one type of multivariate pattern diagram, the pie diagram, for clearly and efficiently presenting data demonstrating the occurrence of reductive dechlorination at sites contaminated by chlorinated ethenes. The pie diagrams were created using normalized ethenes molar concentrations to estimate and illustrate the changes in the concentrations of contaminants and metabolic intermediates that could be attributed to biodegradative processes. Spatial pie‐diagram maps illustrating the normalized chlorinated‐ethenes data were produced using geographic information system (GIS) software. Application of this visualization tool is demonstrated using an example data set and is compared with a conventional x‐y graph of the data. The trends elucidated on the basis of the pie diagrams, coupled with additional site evidence of natural attenuation (e.g., electron donor and acceptor data), are shown to provide a consistent interpretation of the site data. © 2002 Wiley Periodicals, Inc.  相似文献   

9.
EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

10.
Rates of trichloroethene (TCE) mass transformed by naturally occurring biodegradation processes in a fractured rock aquifer underlying a former Naval Air Warfare Center (NAWC) site in West Trenton, New Jersey, were estimated. The methodology included (1) dividing the site into eight elements of equal size and vertically integrating observed concentrations of two daughter products of TCE biodegradation—cis‐dichloroethene (cis‐DCE) and chloride—using water chemistry data from a network of 88 observation wells; (2) summing the molar mass of cis‐DCE, the first biodegradation product of TCE, to provide a probable underestimate of reductive biodegradation of TCE, (3) summing the molar mass of chloride, the final product of chlorinated ethene degradation, to provide a probable overestimate of overall biodegradation. Finally, lower and higher estimates of aquifer porosities and groundwater residence times were used to estimate a range of overall transformation rates. The highest TCE transformation rates estimated using this procedure for the combined overburden and bedrock aquifers was 945 kg/yr, and the lowest was 37 kg/yr. However, hydrologic considerations suggest that approximately 100 to 500 kg/yr is the probable range for overall TCE transformation rates in this system. Estimated rates of TCE transformation were much higher in shallow overburden sediments (approximately 100 to 500 kg/yr) than in the deeper bedrock aquifer (approximately 20 to 0.15 kg/yr), which reflects the higher porosity and higher contaminant mass present in the overburden. By way of comparison, pump‐and‐treat operations at the NAWC site are estimated to have removed between 1,073 and 1,565 kg/yr of TCE between 1996 and 2009. © 2012 Wiley Periodicals, Inc.*  相似文献   

11.
Current knowledge and recent advances in the area of microbial reductive dechlorination of polychlorinated organic compounds are summarized. Factors which may limit the efficacy of the dechlorination process for the in situ bioremediation of contaminated soil and sediment systems are identified. Results of recent studies on the anaerobic biotransformation of soil-sorbed chlorinated ethenes and sediment-sorbed chlorinated benzenes are provided to illustrate how low contaminant bioavailability may control the rate and extent of dechlorination in subsurface systems, especially those with long-term contamination. Use of nonionic, polysorbate surfactants as the sole electron donors of a mixed, methanogenic culture supported the microbial sequential reductive dechlorination of either free or sediment-bound hexachlorobenzene (HCB) to primarily 1,3-dichlorobenzene, but did not enhance the bioavailability of sediment-bound HCB as compared to microcosms, which used glucose. Because current knowledge on the interactions of dechlorinating populations with other microbial populations in the presence of alternative terminal electron acceptors (e.g., nitrate, Fe3+ , Mn4+) is limited, such interactions and their effect on the dechlorination process in subsurface systems need to be further explored to improve our understanding of the reductive dechlorination process in complex environmental systems and lead to the development of more efficient in situ bioremediation technologies and strategies.  相似文献   

12.
Tetrachloroethene (PCE)‐ and trichloroethene (TCE)‐impacted sites pose significant challenges even when site characterization activities indicate that biodegradation has occurred naturally. Although site‐specific, regulatory, and economic factors play roles in the remedy‐selection process, the application of molecular biological tools to the bioremediation field has streamlined the assessment of remedial alternatives and allowed for detailed evaluation of the chosen remedial technology. The case study described here was performed at a PCE‐impacted site at which reductive dechlorination of PCE and TCE had led to accumulation of cis‐dichlorethene (cis‐DCE) with concentrations ranging from approximately 10 to 100 mg/L. Bio‐Trap® samplers and quantitative polymerase chain reaction (qPCR) enumeration of Dehalococcoides spp. were used to evaluate three remedial options: monitored natural attenuation, biostimulation with HRC®, and biostimulation with HRC‐S®. Dehalococcoides populations in HRC‐S‐amended Bio‐Traps deployed in impacted wells were on the order of 103 to 104 cells/bead but were below detection limits in most unamended and HRC‐amended Bio‐Traps. Thus the in situ Bio‐Trap study identified biostimulation with HRC‐S as the recommended approach, which was further evaluated with a pilot study. After the pilot HRC‐S injection, Dehalococcoides populations increased to 106 to 107 cells/bead, and concentrations of cis‐DCE and vinyl chloride decreased with concurrent ethene production. Based on these results, a full‐scale HRC‐S injection was designed and implemented at the site. As with the pilot study, full‐scale HRC‐S injection promoted growth of Dehalococcoides spp. and stimulated reductive dechlorination of the daughter products cis‐DCE and vinyl chloride. © 2008 Wiley Periodicals, Inc.  相似文献   

13.
This article presents field tests comparing two methods of treatment of chlorinated solvents undertaken at the same site. The site is an automobile factory where two chlorinated solvents (CS) plumes were identified. At the first source, in situ chemical reduction (ISCR) was applied, while at the second one, enhanced natural attenuation (ENA) was used. A set of specific multilevel sampling wells were installed approximately 20 m downgradient of the sources to estimate the efficiency of the treatments. The presence of a low‐permeability layer (source 1) or a thick oil lens (source 2) in the top part of the aquifer prevented the CS from reaching the bottom of the aquifer. These layers led to difficulties treating the contamination. At the ISCR and ENA treatment zones, the concentrations of tetrachloroethene (PCE) and trichloroethene (TCE) did not change significantly, while the concentration of metabolites (cis‐1,2‐DCE, vinyl chloride, and ethene) significantly increased 50 to 150 days after treatment. Due to high concentration of CS in the source zone, a mass balance calculation, including chlorine, was possible. It showed that around 1 to 2 percent of the injected products were used to reduce the CS. A detailed analysis and 1D analytical modeling of CS concentrations showed that the treatment led to a large (two to three times) increase in dissolution of the organic phase. This explains why, despite an efficient treatment, the PCE and TCE concentrations remained virtually unchanged. Degradation rates also increased due to the treatment. Due to some differences in the source‐zone chemistry, it was not possible to differentiate between the ISCR and ENA efficiencies. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
The chlorinated solvent stabilizer 1,4‐dioxane (DX) has become an unexpected and recalcitrant groundwater contaminant at many sites across the United States. Chemical characteristics of DX, such as miscibility and low sorption potential, enable it to migrate at least as far as the chlorinated solvent from which it often originates. This mobility and recalcitrance has challenged remediation professionals to redesign existing treatment systems and monitoring networks to accommodate widespread contamination. Furthermore, remediation technologies commonly applied to chlorinated solvent co‐contaminants, such as extraction and air stripping or in situ enhanced reductive dechlorination, are relatively ineffective on DX removal. These difficulties in treatment have required the industry to identify, develop, and demonstrate new and innovative technologies and approaches for both ex situ and in situ treatment of this emerging contaminant. Great strides have been made over the past decade in the development and testing of remediation technologies for removal or destruction of DX in groundwater. This article briefly summarizes the fate and transport characteristics of DX that make it difficult to treat, and presents technologies that have been demonstrated to be applicable to groundwater treatment at the field scale.  ©2016 Wiley Periodicals, Inc.  相似文献   

15.
Nanoscale zero valent iron (nZVI) was evaluated in a laboratory treatability study and subsequently injected as an interim measure to treat source area groundwater impacts beneath a former dry cleaner located in Chapel Hill, North Carolina (the site). Dry cleaning operations resulted in releases of tetrachloroethene (PCE) that impacted site soil at concentrations up to 2,700 mg/kg and shallow groundwater at concentrations up to 41 mg/L. To achieve a design loading rate of 0.001 kg of iron per kilogram of aquifer material, approximately 725 kg of NanoFe? (PARS Environmental) was injected over a two‐week period into a saprolite and partially weather rock aquifer. Strong reducing conditions were established with oxidation–reduction potential (ORP) values below –728 mV. pH levels remained greater than 8 standard units for a period of 12 months. Injections resulted in near elimination of PCE within one month. cis‐1,2‐Dichloroethene accumulated at high concentrations (greater than 65 mg/L) for 12 months. MAROS software (Version 2.2; AFCEE, 2006 ) was used to calculate mass reduction of PCE and total ethenes at 96 percent and 58 percent, respectively, compared to baseline conditions. Detections of acetylene confirmed the presence of the beta‐elimination pathway. Detections of ethene confirmed complete dechlorination of PCE. Based on hydrogen gas generation, iron reactivity lasted 15 months. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
An in situ bioremediation (ISB) pilot study, using whey powder as an electron donor, is being performed at Site 19, Edwards Air Force Base, California, to treat groundwater contaminated with trichloroethene (TCE) via anaerobic reductive dechlorination. Challenging site features include a fractured granitic aquifer, complex geochemistry, and limited biological capacity for reductive dechlorination. ISB was conducted in two phases with Phase I including one‐and‐a‐half years of biostimulation only using whey powder and Phase II including biostimulation with buffered whey powder and bioaugmentation. Results of Phase I demonstrated effective distribution of whey during injections resulting in depletion of high concentrations of sulfate and methanogenesis, but acid production due to whey fermentation and limited buffering capacity of the aquifer resulted in undesirable impacts to pH. In addition, cis‐1,2‐dichloroethene (cis‐1,2‐DCE) stall was observed, which correlated to the unsuccessful growth of native Dehalococcoides populations. Therefore, Phase II included the successful buffering of whey powder using bicarbonate, which mitigated negative pH effects. In addition, bioaugmentation resulted in successful transport of Dehalococcoides populations to greater than 50 feet away from the injection point four months after inoculation. A concomitant depletion of accumulated cis‐1,2‐DCE was observed at all wells affected by bioaugmented Dehalococcoides. © 2008 Wiley Periodicals, Inc.  相似文献   

17.
Chlorinated solvents such as tetrachloroethene (perchloroethene, PCE) and trichloroethene (TCE) have been extensively used in various industrial applications for many years. Because neither are typically consumed through their various uses, they are often released to the environment through industrial application or disposal. Once released, PCE and TCE tend to migrate downward into groundwater, where they persist. In the current case study, cheese whey was used as a groundwater amendment to facilitate the reductive dechlorination of a chlorinated solvent plume underlying an auto dealer/repair shop in Harris County, Texas. From September 2010 to January 2014, over 32,000 gallons of cheese whey were injected into the subsurface resulting in a marked reduction in oxidation–reduction potential (ORP) and nitrate concentrations, coupled with an increase in ferrous iron concentrations. Statistical trend analyses indicate the primary contaminants, PCE and TCE, as well as the daughter product cis‐1,2‐dichloroethene (cDCE), all exhibited a positive response, as evidenced by statistically decreasing trends, and/or reversal in concentration trends, subsequent to cheese whey injections. Maximum concentrations of PCE and TCE in key test wells decreased by as much as 98.97 percent and 99.17 percent, respectively. In addition, the bacterial genus Dehalococcoides, capable of complete reduction of PCE to non‐toxic ethene, was found to be more abundant in the treatment area, as compared to background concentrations. Because cheese whey is a by‐product of the cheese making process, the cost of the product is essentially limited to transport. This study demonstrates cheese whey to be an effective groundwater amendment at a cost which is orders of magnitude lower than popular industry alternatives.  相似文献   

18.
Remediation of chlorinated solvent DNAPL sites often meets with mixed results. This can be attributed to the diametrically opposed nature of the impacts, where the disparate dissolved‐phase plume is more manageable than the localized, high‐concentration source area. A wide range of technologies are available for downgradient plume management, but the relative mass of contaminants in a DNAPL source area generally requires treatment for such technologies to be effective over the long term. In many cases, the characteristics of DNAPL source zones (e.g., depth, soil heterogeneity, structural limitations) limit the available options. The following describes the successful full‐scale implementation of in situ chemical reduction (ISCR) enhanced bioremediation of a TCE DNAPL source zone. In this demonstration, concentrations of TCE were rapidly reduced to below the maximum contaminant level (MCL) in less than six months following implementation. The results described herein suggest that ISCR‐enhanced bioremediation is a viable remedial alternative for chlorinated solvent source zones. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Chlorinated solvents were released to the surficial groundwater underneath a former dry cleaning building, resulting in a groundwater plume consisting of high concentrations of trichloroethene (TCE) and cis‐1,2‐dichloroethene (cis‐1,2‐DCE) and low concentrations of tetrachloroethene (PCE) and vinyl chloride. The initial remedial action included chemical oxidation via injection of 14,400 gallons of Fenton's Reagent in March 2002, and an additional 14,760 gallons in April 2002. A sharp reduction of contaminant concentrations in groundwater was observed the following month; however, rebound of contaminant concentrations was evident as early as October 2002. A source area of PCE‐impacted soils was excavated in June 2004. Following the excavation, Golder Associates Inc. (2007) implemented a biostimulation plan by injecting 55 gallons of potassium lactate (PURASAL® HiPure P) in September 2005, and again in February 2006. Comparing the preinjection and postinjection site conditions, the potassium lactate treatments were successful in accomplishing a 40 to 70 percent reduction in mass within four months following the second injection. Elevated vinyl chloride concentrations have persisted through both injection events; however, significant vinyl chloride reduction has been observed in one well with the highest total organic carbon (TOC) concentrations following each injection. © 2008 Wiley Periodicals, Inc.  相似文献   

20.
1,4‐Dioxane, a common co‐contaminant with chlorinated solvents, is present in groundwater at Site 24 at Vandenberg Air Force Base in California. Historical use of chlorinated solvents resulted in concentrations of 1,4‐dioxane in groundwater up to approximately 2,000 μg/L. Starting in 2013, an in situ propane biosparge system operation demonstrated reductions in 1,4‐dioxane concentrations in groundwater. The work detailed herein extends the efforts of the first field demonstration to a second phase and confirms the biodegradation mechanism via use of stable isotope probing (SIP). After two months of operation, 1,4‐dioxane concentrations decreased approximately 45 to 83 percent at monitoring locations in the test area. The results of the SIP confirmed 13C‐enriched 1,4‐dioxane was transformed into dissolved inorganic carbon (suggesting mineralization to carbon dioxide) and incorporated into microbial biomass (likely attributed to metabolic uptake of biotransformation intermediates or of carbon dioxide).  ©2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号