首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.

Background, aim and scope

Agrochemicals could reach aquatic ecosystems and damage ecosystem functionality. Natural formicide could be an alternative to use in comparison with the more toxic formicides available on the market. Thus, the objective of this study was to assess the ecotoxicity of the new natural formicide Macex? with a battery of classical aquatic ecotoxicity tests.

Material and methods

Bacteria (Aliivibrio fischeri), algae (Pseudokirchneriella subcapitata), hydra (Hydra attenuata), daphnids (Daphnia magna), and fish (Danio rerio) tests were performed in accordance with international standardized methodologies.

Results

In the range of formicide concentrations tested (0.03 to 2.0?g?L?1) EC50 values varied from 0.49 to >2.0?g?L?1, with P. subcapitata being the most sensitive species and H. attenuata and D. rerio the most tolerant species to this product in aqueous solutions.

Conclusions

This new formicide preparation can be classed as a product of low toxicity compared to the aquatic ecotoxicity of the most common commercialized formicides.  相似文献   

2.

Introduction

The paper analyses the environment pollution state in different case studies of economic activities (i.e. co-generation electric and thermal power production, iron profile manufacturing, cement processing, waste landfilling, and wood furniture manufacturing), evaluating mainly the environmental cumulative impacts (e.g. cumulative impact against the health of the environment and different life forms).

Materials and methods

The status of the environment (air, water resources, soil, and noise) is analysed with respect to discharges such as gaseous discharges in the air, final effluents discharged in natural receiving basins or sewerage system, and discharges onto the soil together with the principal pollutants expressed by different environmental indicators corresponding to each specific productive activity. The alternative methodology of global pollution index (I GP * ) for quantification of environmental impacts is applied.

Results and discussion

Environmental data analysis permits the identification of potential impact, prediction of significant impact, and evaluation of cumulative impact on a commensurate scale by evaluation scores (ESi) for discharge quality, and global effect to the environment pollution state by calculation of the global pollution index (I GP * ).

Conclusions

The I GP * values for each productive unit (i.e. 1.664?C2.414) correspond to an ??environment modified by industrial/economic activity within admissible limits, having potential of generating discomfort effects??. The evaluation results are significant in view of future development of each productive unit and sustain the economic production in terms of environment protection with respect to a preventive environment protection scheme and continuous measures of pollution control.  相似文献   

3.

Introduction

Trends in precipitation pH and conductivity during 1992?C2009, and in ionic compositions from January 2007 to June 2009, are reported from Lushan Mountain, one of the highest mountains in mid-east China. Annual mean pH was in the range of 4.35?C5.01 and showed a statistically very significant (P?P?Results and discussions Over the period of study, Lushan Mountain received more rainfall in spring and summer. The pH values varied seasonally with winter minima. The winter multiyear seasonal mean pH was 4.35. The corresponding summer value was 4.88. SO 4 2? and NO 3 ? were the main anions, and NH 4 + and Ca2+ the main cations. The anion to cation ratio was 0.8?C1.0, and that of [SO 4 2? ] to [NO 3 ? ] was 2.4-3.0, much lower than that of the 1980s. However, sulfuric acid was still the main acid present. The ratio of [NH 4 + ] to [Ca2+] was about 1.0, suggesting that these two alkaline substances provided close acid neutralizing capacity. The ratio of [Cl?] to [Na+] was about 0.67, somewhat lower than that of natural precipitation.

Conclusions

Ionic composition varied seasonally and was closely correlated to the amounts of rainfall and pollution. Trajectory analyses showed that the trajectories to Lushan Mountain could be classified in six clusters and trajectories originating from the South Sea and the areas surrounding Lushan Mountain had the greatest impacts on precipitation chemistry.  相似文献   

4.

Purpose

To examine if chronic exposure of feral fish to elevated Pb concentrations in the river water (up to 1???g?L?1), which are still lower than European recommendations for dissolved Pb in surface waters (7.2???g?L?1; EPCEU (Official J L 348:84, 2008)), would result in Pb accumulation in selected fish tissues.

Methods

Lead concentrations were determined by use of HR ICP-MS in the gill and hepatic soluble fractions of European chub (Squalius cephalus) caught in the Sutla River (Croatia?CSlovenia).

Results

At the site with increased dissolved Pb in the river water, soluble gill Pb levels (17.3???g?L?1) were approximately 20 times higher compared to uncontaminated sites (0.85???g?L?1), whereas the ratio between contaminated (18.1???g?L?1) and uncontaminated sites (1.17???g?L?1) was lower for liver (15.5). Physiological variability of basal Pb concentrations in soluble gill and hepatic fractions associated to fish size, condition, sex, or age was not observed, excluding the possibility that Pb increase in chub tissues at contaminated site could be the consequence of studied biotic parameters. However, in both tissues of Pb-exposed specimens, females accumulated somewhat more Pb than males, making female chubs potentially more susceptible to possible toxic effects.

Conclusions

The fact that Pb increase in gill and hepatic soluble fractions of the European chub was not caused by biotic factors and was spatially restricted to one site with increased dissolved Pb concentration in the river water points to the applicability of this parameter as early indicator of Pb exposure in monitoring of natural waters.  相似文献   

5.

Purpose

Bacterial community structure and the chemical components in aerosols caused by rotating brushes in an Orbal oxidation ditch were assessed in a Beijing municipal wastewater treatment plant.

Methods

Air samples were collected at different distances from the aerosol-generating rotating brushes. Molecular culture-independent methods were used to characterize the community structure of the airborne bacteria in each sample regardless of cell culturability. A clone library of 16S rDNA directly amplified from air DNA of each sample was constructed and sequenced to analyze the community composition and diversity. Insoluble particles and water-soluble ions emitted with microorganisms in aerosols were analysis by a scanning electron microscope together with energy dispersive X-ray spectroscopy and ion chromatogram analyzer.

Results

In total, most of the identified bacteria were Proteobacteria. The majority of sequences near the rotating brushes (the main source of the bioaerosols) were Proteobacteria (62.97 %) with ??-(18.52 %) and ??-(44.45?%) subgroups and Bacteroidetes (29.63 %). Complex patterns were observed for each sampling location, suggesting a highly diverse community structure, comparable to that found in water in the Orbal oxidation ditch. Accompany with microorganisms, 46.36???g/m3 of SO 4 2? , 29.35???g/m3 of Cl?, 21.51???g/m3 of NO 3 ? , 19.76???g/m3 of NH 4 + , 11.42???g/m3 of PO 4 3? , 6.18???g/m3 of NO 2 ? , and elements of Mg, Cl, K, Na, Fe, S, and P were detected from the air near the aerosols source.

Conclusions

Differences in the structure of the bacterial communities and chemical components in the aerosols observed between sampling sites indicated important site-related variability. The composition of microorganisms in water was one of the most important sources of bacterial communities in bioaerosols. Chemical components in bioaerosols may provide a media for airborne microorganism attachment, as well as a suitable microenvironment for their growth and survival in the air. This study will be benefit for the formulation of pollution standards, especially for aerosols, that take into account plant workers?? health.  相似文献   

6.

Introduction

A synthetic water-soluble meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate of iron(III) chloride, Fe-(TDCPPS)Cl, was employed to catalyze the oxidative co-polymerization of penta-halogenated phenols in two humic materials of different origin.

Materials and methods

Co-polymerization of pentachlorophenol (PCP) was followed by high-performance size-exclusion chromatography (HPSEC), the unbound PCP recovered from reacting humic solutions was evaluated by gas-chromatography/electron capture detector, and the oxidative catalyzed coupling of pentafluorophenol (PFP) into humic matter was assessed by liquid-state 19F-NMR spectroscopy. HPSEC showed that the catalyzed oxidative coupling between PCP and humic molecules increased the apparent weight-average molecular weight (M w) values in both humic substances.

Results and discussion

HPSEC further indicated that the co-polymerization reaction turned the loosely bound humic supramolecular structures into more stable conformations, which could no longer be disrupted by the disaggregating effect of acetic acid. The occurrence of covalent linkages established between PCP and humic molecules was also suggested by the very little amount of PCP found free in solution after the catalyzed co-polymerization. 19F-NMR spectroscopy suggested that also PFP could be oxidatively coupled to humic materials. PFP-humic co-polymerization reaction produced 19F-spectra with many more 19F signals and wider chemical shifts spread than for PFP alone or PFP subjected to catalyzed coupling without humic matter.

Conclusions

These findings show that biomimetic iron-porphyrin is an efficient catalyst for the covalent binding of polyhalogenated phenols to humic molecules, thereby suggesting that the co-polymerization reaction may become a useful technology to remediate soils and waters contaminated by polyhalogenated phenols and their analogues.  相似文献   

7.

Purpose

This study contains some new findings connected to the photolysis of the drug paracetamol (hereinafter APAP) especially in light of estimating natural conditions, and it will offer information to better evaluate environmental problems connected with this widely used analgesic agent. Only a few studies, so far, have focussed on the photodegradation process of APAP in the natural environment, and the question about the role of the colored/chromophoric dissolved organic matter (CDOM) and nitrate (NO 3 ? ) as photoinductors is almost open.

Methods

APAP dissolved in freshwater and pure laboratory water in the presence and absence of CDOM and NO 3 ? ions was irradiated using weak-energy photon energies simulating natural conditions.

Results

CDOM and NO 3 ? as photoinductors produced only the slow phototransformation of APAP under weak energy radiation, and APAP seemed to be practically resistant to direct photolysis under weak radiant energies available in natural conditions. The estimated reaction efficiencies, in addition to half-lives, speak for that NO 3 ? and CDOM do not act as quite independent photoinductors but their effect in conjunction (CDOM?CNO 3 ? ?Cwater) is stronger than the separate ones. The principal phototransformation intermediates of APAP were mono-hydroxy derivatives, depending on available photon energies formed via ortho- or meta-hydroxylation, possessing substantial power of resistance to further specific transformation reactions.

Conclusions

The estimated half-life of the phototransformation of APAP in the natural aqueous environment and in the presence of suitable photoinductors will be about 30?days or more.  相似文献   

8.
To explain the detailed process involved in phosphorus removal by periphyton, the periphyton dominated by photoautotrophic microorganisms was employed in this study to remove inorganic phosphorus (P i ) from wastewater, and the removal kinetics and isotherms were then evaluated for the P i removal process. Results showed that the periphyton was capable of effectively removing P i that could completely remove the P i in 24 h at an initial P i concentration of 13 mg P L?1. Furthermore, the P i removal process by the periphyton was dominated by adsorption at initial stage (~24 h), which involved physical mechanistic process. However, this P i adsorption process was significantly influenced by environmental conditions. This work provides an insight into the understanding of phosphorus adsorption by periphyton or similar microbial aggregates.
Graphical Abstract
?  相似文献   

9.

Background

PM10 aerosol samples were simultaneously collected at two urban and one urban background sites in Fuzhou city during two sampling campaigns in summer and winter. PM10 mass concentrations and chemical compositions were determined.

Methods

Water-soluble inorganic ions (Cl?, NO 3 ? , SO 4 2? , NH 4 + , K+, Na+, Ca2+, and Mg2+), carbonaceous species (elemental carbon and organic carbon), and elements (Al, Si, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, and Pb) were detected using ion chromatography, thermal/optical reflectance, and proton-induced X-ray emission methods, respectively.

Results

PM10 mass concentrations, as well as most of the chemical components, were significantly increased from urban background to urban sites, which were due to enhanced anthropogenic activities in urban areas. Elements, carbonaceous species, and most of the ions were more uniformly distributed at different types of sites in winter, whereas secondary ion SO 4 2? , NO 3 ? , and NH 4 + showed more evident urban-background contrast in this season. The chemical mass closure indicated that mineral dust, organic matters, and sulfate were the most abundant components in PM10. The sum of individually measured components accounted for 86.9?C97.7% of the total measured PM10 concentration, and the discrepancy was larger in urban area than in urban background area.

Conclusion

According to the principal component analysis?Cmultivariate linear regression model, mineral dust, secondary inorganic ions, sea salt, and motor vehicle were mainly responsible for the PM10 particles in Fuzhou atmosphere, and contributed 19.9%, 53.3%, 21.3%, and 5.5% of PM10, respectively.  相似文献   

10.
The present study aims to investigate the EDTA catalyzed reduction of nitrate (NO 3 ? ) by zero-valent bimetallic (Fe?CAg) nanoparticles (ZVBMNPs) in aqueous medium and to enumerate the effect of temperature, solution pH, ZVBMNPs dose and EDTA concentration on NO 3 ? reduction. Batch experimental data were generated using a four-factor Box?CBehnken design. Optimization modeling was performed using the response surface method for maximizing the reduction of NO 3 ? by ZVBMNPs. Significance of the independent variables and their interactions were tested by the analysis of variance and t test statistics. The model predicted maximum reduction capacity (340.15?mg?g?1 NO 3 ? ) under the optimum conditions of temperature, 60?°C; pH?4; dose, 1.0?g?l?1; and EDTA concentration, 2.0?mmol?l?1 was very close to the experimental value (338.62?mg?g?1) and about 16?% higher than the experimentally determined capacity (291.32?mg?g?1). Study demonstrated that ZVBMNPs had higher reduction efficiency than Fe0 nanoparticles for NO 3 ? . EDTA significantly enhanced the NO 3 ? reduction by ZVBMNPs. The EDTA catalyzed reduction of NO 3 ? by ZVBMNPs can be employed for the effective decontamination of water.  相似文献   

11.

Introduction

The aims of the present study are to investigate the effects of Ce3+ on the growth and some antioxidant metabolisms in rice seedlings (Oryza sativa L. cv Shengdao 16).

Materials and methods

The rice was treated with 0, 0.05, 0.1, 0.5, 1.0, and 1.5?mM Ce3+, respectively. The growth index of rice was measured. The chlorophyll content; catalase, superoxide dismutase, and peroxidase activities; and the level of hydrogen peroxide (H2O2), superoxide anion (O 2 ·? ), and malondialdehyde were assayed. The accumulation of Ce3+ and the uptake of mineral nutrition elements were analyzed with ICP-SF-MS.

Results and discussion

Hormetic effects of Ce3+ on the growth and some antioxidant metabolisms were found in the roots and shoots of rice. The roots can accumulate a much higher content of Ce3+ than shoots and Ce3+ mainly located in the cell wall of roots. Moreover, the uptake of K, Mg, Ca, Na, Fe, Mn, Zn, Cu, and Mo in the roots and shoots was affected with the exposure of different Ce3+ treatments, which indicated that Ce3+ affected the nutritional status of roots and shoots and further affected the growth of rice.

Conclusion

The appropriate amount of Ce3+ improved the defense system and growth of rice. The roots can accumulate a much higher content of Ce3+ than shoots. Moreover, the uptake of K, Mg, Ca, Na, Fe, Mn, Zn, Cu, and Mo in the roots and shoots was affected with the exposure of different Ce3+ treatments.  相似文献   

12.

Purpose

We evaluate malathion toxicity to Japanese medaka (Oryzias latipes) juveniles by using a mass spectrometry combined with gas chromatography (GC/MS) metabolomics approach.

Methods

Medaka were exposed to low (L) and high (H) concentrations (nominally 20 and 2,000 ??g/L, respectively) of water-borne malathion. Metabolites were extracted from the fish, derivatized, and analyzed by GC/MS. Identified metabolites were subjected to one-way analysis of variance and principal component analysis (PCA). We examined the variations in the amounts of the metabolites during the exposure period.

Results and discussion

At 24 h, control, L, and H groups were separated along PC1, suggesting that the effects of malathion depended on exposure concentration. The PCA results at 96 h suggest that the metabolite profiles variations of the L and H groups differed, and thus that the effects of malathion in groups differed. At 24 h, the amounts of amino acids in both exposed groups were lower than the control group amounts, perhaps owing to accelerated protein synthesis. At 96 h, the amounts of almost all the amino acids increased in the L group but decreased in the H group relative to the control group amounts, suggesting the proteolysis occurred in the L group while protein synthesis continued in the H group, that the high malathion exposure affected the fish. In addition, at 96 h, gluconeogenesis may have been induced in the L group but not in H group.

Conclusions

Malathion exposure may have altered the balance between protein synthesis and degradation and induced gluconeogenesis in medaka. Our results suggest that metabolomics will be useful for comprehensive evaluation of toxicity.  相似文献   

13.

Introduction

The degradation and mineralization of two triketone (TRK) herbicides, including sulcotrione and mesotrione, by the electro-Fenton process (electro-Fenton using Pt anode (EF-Pt), electro-Fenton with BDD anode (EF-BDD) and anodic oxidation with BDD anode) were investigated in acidic aqueous medium.

Methods

The reactivity of both herbicides toward hydroxyl radicals was found to depend on the electron-withdrawing effect of the aromatic chlorine or nitro substituents. The degradation of sulcotrione and mesotrione obeyed apparent first-order reaction kinetics, and their absolute rate constants with hydroxyl radicals at pH?3.0 were determined by the competitive kinetics method.

Results and discussion

The hydroxylation absolute rate constant (k abs) values of both TRK herbicides ranged from 8.20?×?108 (sulcotrione) to 1.01?×?109 (mesotrione) L?mol?1?s?1, whereas those of the TRK main cyclic or aromatic by-products, namely cyclohexane 1,3-dione , (2-chloro-4-methylsulphonyl) benzoic acid and 4-(methylsulphonyl)-2-nitrobenzoic acid, comprised between 5.90?×?108 and 3.29?×?109?L?mol?1?s?1. The efficiency of mineralization of aqueous solutions of both TRK herbicides was evaluated in terms of total organic carbon removal. Mineralization yields of about 97?C98% were reached in optimal conditions for a 6-h electro-Fenton treatment time.

Conclusions

The mineralization process steps involved the oxidative opening of the aromatic or cyclic TRK by-products, leading to the formation of short-chain carboxylic acids, and, then, of carbon dioxide and inorganic ions.  相似文献   

14.
Although the effect of volatile organic compounds (VOCs) on the oxidation of dissolved sulfur dioxide by oxygen has been the subject of many investigations, this is the first study which examines the effect of a large number of precisely 16 hydroxy compounds. The kinetics both in the absence and the presence of VOCs was defined by rate laws (A and B): A $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_o={k}_o\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ B $$ \hbox{-} \mathrm{d}\left[\mathrm{S}\left(\mathrm{IV}\right)\right]/\mathrm{dt}={R}_i={k}_i\left[\mathrm{S}\left(\mathrm{IV}\right)\right] $$ where R o and k o are the initial rate and first-order rate constant, respectively, in the absence of VOCs, R i , and k i are the initial rate and the first-order rate constant, respectively, in the presence of VOCs, and [S(IV)] is the concentration of dissolved sulfur dioxide, sulfur(IV). The nature of the dependence of k i on the concentration of inhibitor, [Inh], was defined by Eq. (C). C $$ {k}_i={k}_0/\left(1+B\left[\mathrm{Inh}\right]\right) $$ where B is an empirical inhibition parameter. The values of B have been determined from the plots of 1/k i versus [Inh]. Among aliphatic and aromatic hydroxy compounds studied, t-butyl alcohol and pinacol were without any inhibition effect due to the absence of secondary or tertiary hydrogen. The values of inhibition parameter, B, were related to k inh , the rate constant for the reaction of SO4 ? radical with the inhibitor, by Eq. (D). D $$ B=\left(9\pm 2\right)\times 1{0}^{-4}\times {k}_{inh} $$ Equation (D) may be used to calculate the values of either of B or k inh provided that the other is known. The extent of inhibition depends on the value of the composite term, B[Inh]. However, in accordance with Eq. (C), the extent of inhibition would be sizeable and measurable when B[Inh]?>?0.1 and oxidation of S(IV) would be almost completely stopped when B[Inh]?≥?10. B[Inh] value can be used as a guide whether the reaction step: SO4 ??+?organics? \( \overset{k_{inh}}{\to } \) ?SO4 2??+?non-chain products: should be included in the multiphase models or not.  相似文献   

15.
16.

Purpose

The aim of this work was to assess the levels of copper and zinc in fish from the main freshwater ecosystems of Moldova, in relation with species, habitat, age, sex, season, and development stage.

Methods

Fish from Cyprinidae and Percidae families (Cyprinus carpio, Carassius auratus gibelio, Rutilus rutilus heckeli, Abramis brama, Aristichthys nobilis, Hypophtalmichthys molitrix, Sander lucioperca) were collected from Prut and Dniester rivers, Cuciurgan, Dubasari, and Costesti-Stanca reservoirs, and ponds of farms in the Dniester delta. The Cu and Zn content of fish tissues (skeletal muscles, liver, gonads, gills, skin, and scales) was determined by flame atomic absorption spectrophotometer AAS-3, of water by graphite furnace HGA 900 of AAnalist 400.

Results

The level of heavy metals accumulation in muscles of immature fish follows their dynamics in water. The highest concentration of zinc was registered in the gonads of mature fish, and of copper??in the liver. The lowest Cu and Zn contents were recorded in the muscles and are in the United Nations Food and Agriculture Organization safety-permissible levels for human consumption. Cu and Zn contents in muscles of fish depend on specimen age. Their level in fish gonads was sharply increasing during pre-spawning period. During the early developmental stages, the metal concentration in fish eggs and larvae varies within wide limits, but the accumulation pattern is similar in the investigated species.

Conclusions

The fish represent one of the most indicative factors for the estimation of trace metals pollution in freshwater systems and this is important not only for monitoring purposes, but also for the fish culture ones.  相似文献   

17.

Purpose

The quality of fish produced in ponds needs to be ensured. Indeed, pond is often strongly connected to an agricultural watershed, and pesticides are a main health and environmental issue of concern. In this context, the purpose of this study is to highlight the management practices which could impact the pesticide contamination profiles in edible fish and to give recommendations for better practices.

Methods

A principal component analysis, coupled to a hierarchical cluster analysis, was performed to evaluate temporal evolution of contamination profiles and to assess variability among fish species and among sites according to watershed characteristics. The explicative variables correspond to muscular concentrations of pesticides (azoxystrobin, clomazone, diflufenican, carbendazim, isoproturon, metazachlor, napropamid) in three species of fish (Perca fluviatilis, Cyprinus carpio and Rutilus rutilus), caught in five ponds during two sampling campaigns. Management data are added variables in order to discuss about parameters suspected to be implicated in the contamination profiles recorded.

Results

This work shows that high amounts of pesticides applied, short crop rotation durations and bare soil practices led to contamination of sediments and fish and were associated to a “bad” management of watershed. Breeding fish that had low masses and establishing the fishing period at the end of winter seemed to be “bad” management of pond. Aggravating topological parameters were big watershed coupled to small pond and high proportions of sand soils in the watershed.

Conclusions

Reducing amounts of pesticide used (e.g. policy agency plans, farmer acceptance), favouring long-term rotations and inter-cultures, adapting pond creation and fish farming practices to watershed management and topography all could reduce pesticide levels in edible fish and contribute to a better sustainability of the extensive fish farming in pond.  相似文献   

18.

Purpose

Lack of focus on the treatment of wastewaters bearing potentially hazardous pollutants like 1,1,2 trichloroethane and 1,1,2,2 tetrachloroethane in anaerobic reactors has provided an impetus to undertake this study. The objective of this exercise was to quantify the behavior of upflow anaerobic sludge blanket reactors and predict their performance based on the overall organic substrate removal.

Methods

The reactors (wastewater-bearing TCA (R2), and wastewater-bearing TeCA (R3)) were operated at different hydraulic retention times (HRTs), i.e., 36, 30, 24, 18, and 12?h corresponding to food-to-mass ratios varying in the range of 0.2?C0.7?mg chemical oxygen demand (COD) mg?1 volatile suspended solids day?1. The process kinetics of substrate utilization was evaluated on the basis of experimental results, by applying three mathematical models namely first order, Grau second order, and Michaelis-Menten type kinetics.

Results

The results showed that the lowering of HRT below 24?h resulted in reduced COD removal efficiencies and higher effluent pollutant concentrations in the reactors. The Grau second-order model was successfully applied to obtain the substrate utilization kinetics with high value of R 2 (>0.95). The Grau second-order substrate removal constant (K 2) was calculated as 1.12 and 7.53?day?1 for reactors R2 and R3, respectively.

Conclusion

This study demonstrated the suitability of Grau second-order kinetic model over other models, for predicting the performance of reactors R2 and R3, in treating wastewaters containing chlorinated ethanes under different organic and hydraulic loading conditions.  相似文献   

19.

Purpose

Biodegradation and biodecolorization of Drimarene blue K2RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system.

Method

Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH?5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500?mg?l?1) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24?C72?h. Total run time for reactor operation was 17?days.

Results

The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg?l?1 initial dye concentration and HRT of 24?h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC?CMS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K2RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye.

Conclusion

The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.  相似文献   

20.

Purpose

The discharge of colored effluents from industries is an important environmental issue and it is indispensable to remove the dyes before the water gets back to the rivers. The magnetic adsorbents present the advantage of being easily separated from the aqueous system after adsorption by positioning an external magnetic field.

Methods

Magnetic N-lauryl chitosan (L-Cht/??-Fe2O3) particles were prepared and characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy, and vibrating sample magnetometry. Remazol Red 198 (RR198) was used as a reactive dye model for adsorption on L-Cht/??-Fe2O3. The adsorption isotherms were performed at 25°C, 35°C, 45°C, and 55°C and the process was optimized using a 23 factorial design (analyzed factors: pH, ionic strength, and temperature). The desorption and regeneration studies were performed in a three times cycle.

Results

The characterization of the material indicated that the magnetic particles were introduced into the polymeric matrix. The pseudo-second order was the best model for explaining the kinetics and the Langmuir?CFreundlich was the best-fitted isotherm model. At room temperature, the maximum adsorption capacity was 267?mg?g?1. The material can be reused, but with a decrease in the amount of adsorbed dye.

Conclusions

L-Cht/??-Fe2O3 is a promising material to remove RR198 and probably other similar reactive dyes from aqueous effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号