首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poor soil fertility is often the biggest challenge to the establishment of vegetation in mine wastes deposits. We conducted field trials in the El Gorguel and El Lirio sites in SE Spain, two representative tailing ponds of similar properties except for pH, to understand the environmental and plant-relevant benefits of marble waste (MW) and pig slurry (PS) applications to mine tailings. Low pH (5.4) tailings (El Lirio) exhibit reduction of up to fourfold in bio-availability of metals as shown by the DTPA-Zn, Pb, water-soluble Zn, Pb and up to 3× for water-soluble Cd. Tailings in El Gorguel have high pH (7.4) and did not exhibit significant trends in the reductions of water-extractable Zn, Pb, Cd and Cu. Improvements to the edaphic (plant-relevant) properties of tailings after the amendments are not as sensitive to pH compared to the environmental characteristics. The two sites had increases in aggregate stability, organic matter (total N and organic C) although total N is higher in the El Gorguel (up to 212 μg N kg?1) than the El Lirio (up to 26 μg N kg?1). However, cation exchange capacities are similar in both sites at 15.2 cmol(+) kg?1. We conclude that the characteristics, especially pH, of tailing materials significantly influence the fate of metals but not improvements to plant-relevant properties such as cation exchange capacity and aggregate stability 1 year after the application of MW and PS amendments.  相似文献   

2.
The immobilisation of heavy metals in contaminated soils is a promising alternative to conventional remediation techniques. Very few studies have focused on the use of iron-rich nanomaterials and natural materials for the adsorption of toxic metals in soils. Synthesised iron-rich nanomaterials (Fe and Zr–Fe oxides) and natural iron-rich materials (natural red earth; NRE) were used to immobilise As and Pb in contaminated agricultural soil. Total concentrations of As and Pb in the initial soil (as control) were 170.76 and 1945.11 mg kg?1, respectively. Amendments were applied into the soil at 1, 2.5 and 5% (w/w) in triplicate and incubated for 150 days. Except for the NRE-amended soil, soil pH decreased from 5.6 to 4.9 with increasing application rates of Fe and Zr–Fe oxides. With addition of Fe and Zr–Fe oxides at 5%, the ammonium acetate (NHO4Ac)-extractable Pb was greatly decreased by 83 and 65% compared with NRE addition (43%). All subjected amendments also led to a decrease in NHO4Ac-extractable As in the soils, indicating the high capacity of As immobilisation. Soil amended with NRE showed a lower ratio of cy19:0 to 18:1ω7c, indicating decreased microbial stress. The toxicity characteristic leaching procedure produced results similar to the NHO4Ac extraction for As and Pb. The NRE addition is recommended for immobilising heavy metals and maintaining biological soil properties.  相似文献   

3.
There have been significant efforts to establish a widely usable method for the prediction of trace element bioavailability in soil. In this work, we used extraction with 0.01 M CaCl2 and 0.05 M ethylenediaminetetraacetic acid (EDTA) to estimate bioavailable concentrations of As, Cd, Cu, Pb, and Zn in a soil moderately contaminated with trace elements 1 and 2 years after the application of three amendments. The experiment took place in a field plot of a soil affected by the toxic spill of the Aznalcóllar mine. Four treatments were established: three with amendments (biosolid compost, sugar beet lime, and a combination of leonardite plus sugar beet lime) and a control without amendment. Trace element concentrations of two representative species in each year (Lamarckia aurea and Poa annua in 2004 and Lamarckia aurea and Bromus rubens in 2005) were analyzed. The results showed a positive effect of the amendments both on soil and vegetation. Trace element concentrations in plants growing in the amended subplots were lower than those in plants from nonamended subplots. As a rule, concentrations of CaCl2-soluble Cd, Cu, and Zn in soil were positively correlated with trace elements in plants, whereas EDTA extraction was scarcely correlated with plant concentration. For species of grasses, especially L. aurea, CaCl2 seems to be a more suitable extractant to predict trace element bioavailability in this contaminated soil.  相似文献   

4.
The mineralogical and chemical characteristics of As solid phases in arsenic-rich mine tailings from the Nakdong As–Bi mine in Korea was investigated. The tailings generated from the ore roasting process contained 4.36% of As whereas the concentration was up to 20.2% in some tailings from the cyanidation process for the Au extraction. Thin indurated layers and other secondary precipitates had formed at the surfaces of the tailings piles and the As contents of the hardened layers varied from 2.87 to 16.0%. Scorodite and iron arsenate (Fe3AsO7) were the primary As-bearing crystalline minerals. Others such as arsenolamprite, bernardite and titanium oxide arsenate were also found. The amorphous As–Fe phases often showed framboidal aggregates and gel type textures with desiccation cracks. Sequential extraction results also showed that 55.7–91.1% of the As in tailings were NH4-oxalate extractable As, further confirmed the predominance of amorphous As–Fe solid phases. When the tailings were equilibrated with de-ionized water, the solution exhibited extremely acidic conditions (pH 2.01–3.10) and high concentrations of dissolved As (up to 29.5 mg L−1), indicating high potentials for As to be released during rainfall events. The downstream water was affected by drainage from tailings and contained 12.7–522 μg L−1 of As. The amorphous As–Fe phases in tailings have not entirely been stabilized through the long term natural weathering processes. To remediate the environmental harms they had caused, anthropogenic interventions to stabilize or immobilize As in the tailings pile should be explored.  相似文献   

5.
Phosphogypsum (PG) is produced as a solid waste from phosphatic fertilizer plants. The waste slurry is disposed off in settling ponds or in heaps. This solid waste is now increasingly being used as a calcium supplement in agriculture. This study reports the effectof PG amendmenton soil physico chemical properties, bacterial and fungal count and activities of soil enzymes such as invertase, cellulase and amylase over an incubation period of 28 days. The highest mean percent carbon loss (55.98%) was recorded in 15% PG amended soil followed by (55.28%) in 10% PG amended soil and the minimum (1.68%) in control soil. The highest number of bacterial colonies (47.4 CFU g(-1) soil), fungal count (17.8 CFU g(-1) soil), highest amylase activity (38.4 microg g(-1) soil hr(-1)) and cellulase activity (38.37 microg g(-1) soil hr(-1)) were recorded in 10% amended soil. Statistically significant difference (p<0.05) has been recorded in the activities of amylase and cellulase over the period of incubation irrespective of amendments. Considering the bacterial and fungal growth and the activities of the three soil enzymes in the control and amended sets, it appears that 10% PG amendment is optimal for microbial growth and soil enzyme activities.  相似文献   

6.
Numerous smelter sites are surrounded by rural land. The entrance of non-essential metals such as lead or cadmium into the food chain is very likely as well as phytotoxicity effects of zinc. Finding a realistic solution for these large-scale contaminations was one aim of this study. Previous results from pot experiments showed a high potential for the reduction of metals entering the food chain via crops grown on smelter-contaminated soils from Arnoldstein, Austria, by the use of amendments for immobilisation. A further aim was to optimise a field experiment for overcoming the gap between pot and field experiments and to look for long-term efficiency of the treatments [lime (CA), red mud (RM), gravel sludge + red mud (GS + RM)]. Field experiment results were obtained for 5 years. Besides soil and soil pore water samples, the following harvests were yielded: spring barley (Hordeum distichon ssp. L.) (2004–2005), narrowleaf plantain (Plantago lanceolata L.) (2006–2007) and velvet grass (Holcus lanatus L.) (2007–2008). The long-term efficiency of GS + RM led us to conclude that their application seems to be a realistic and practical measure for extensively contaminated land, best in combination with metal excluding cultivars.  相似文献   

7.
Phytochelatins and related metabolites (cysteine and GSH) were found to be induced in the shoots of two varieties of Cicer arietinum viz., CSG-8962 and C-235 grown under different amendments of fly-ash with garden soil and press mud. Cysteine, GSH, PCs and its speciation were found in higher concentrations in amended fly-ash than in the control 100% soil. Two species of metal binding peptides i.e., PC2 and PC4 were found in both varieties and in amendments, however, their concentration varied depending upon the fly-ash concentrations in both amendments. Further, var. CSG-8962 was found more tolerant than var. C-235 because of higher concentrations of PCs and related metabolites.  相似文献   

8.
A study to understand the mobility and transport of heavy metals (HMs) from soil and soil amended with sewage sludge to maize plants was carried out. The total and ethylenediaminetetraaceticacid (EDTA)-extractable HMs in agricultural soil and untreated domestic sewage sludge samples, and the correlation between the total and extractable metals in soil and sewage sludge were carried out. Pot experiments were performed to study the transfer of HMs to maize grains, grown in soil (control) and in soil amended with sewage sludge (test samples). The total and extractable HMs in soil, sewage sludge, and maize grains were analysed by FAAS/ETAAS (flame atomic absorption spectrometer/electrothermal atomic absorption spectrometer) after digestion in microwave oven. Statistically significant correlations were obtained between the total contents of Cu, Cd, As and their respective extractable fractions in soil, while in domestic wastewater sludge (DWS) the better correlation was observed only for Ni and Cd. The edible part of maize plants (grains) from test samples presented high concentration of Zn, Pb, Ni, Cd, Cu, As, and Cr concentrations (80.7–85.6, 3.8–3.95, 2.35–2.5, 0.75–0.82, 3.21–3.29, 0.23–0.27, and 0.22–0.29?mg?kg?1, respectively). Good correlations were found between metals in exchangeable fractions of both soil and DWS and total metals in control and test samples of maize grains. The transfer factor of all HMs from DWS to maize grains was also determined.  相似文献   

9.
The bioavailability of arsenic (As) in the soil environment is largely governed by its adsorption–desorption reactions with soil constituents. We have investigated the sorption–desorption behaviour of As in four typical Bangladeshi soils subjected to irrigation with As-contaminated groundwater. The total As content of soils (160 samples) from the Laksham district ranged from <0.03 to approximately 43 mg kg−1. Despite the low total soil As content, the concentration of As in the pore water of soils freshly irrigated with As-contaminated groundwater ranged from 0.01 to 0.1 mg l−1. However, when these soils were allowed to dry, the concentration of As released in the pore water decreased to undetectable levels. Remoistening of soils to field moisture over a 10-day period resulted in a significant (up to 0.06 mg l−1) release of As in the pore water of soils containing >10 mg As kg−1 soil, indicating the potential availability of As. In soils containing <5 mg As kg−1, As was not detected in the pore water. A comparison of Bangladeshi soils with strongly weathered long-term As-contaminated soils from Queensland, Australia showed a much greater release of As in water extracts from the Australian soils. However, this was attributed to the much higher loading of As in these Australian soils. The correlation of pore water As with other inorganic ions (P, S) showed a strongly significant (P < 0.001) relationship with P, although there was no significant relationship between As and other inorganic cations, such as Fe and Mn. Batch sorption studies showed an appreciable capacity for both AsV and AsIII sorption, with AsV being retained in much greater concentrations than AsIII.  相似文献   

10.
A soil column experiment was set up to investigate the effect of red mud from Ajka (Hungary) on a typical soil profile from the affected area. The chemical changes caused by the red mud leachate and the effects of these changes on living organisms were assessed. Ecotoxicological tests were performed with Vibrio fischeri, Sinapis alba and Folsomia candida and the number of aerobic heterotrophic microorganisms was determined. The total, plant-available, exchangeable and water-soluble fractions of Na, Mo, Cu and Cr increased in the soil, mostly owing to their leaching from the red mud layer, but partly to the increase in the pH and DOC concentration. The chemical changes only had significant effects on the test organisms in the 0–30 cm soil layer, except for F. candida, which also had a lower survival rate in the 30–50 cm soil layer. No severe toxic effects were detected in the test organisms; in fact a stimulating effect was revealed for the aerobic heterotrophic cell number and for S. alba germination. However, the red mud itself was toxic, so the ecotoxicological tests justified the removal of red mud from the soil surface after the disaster.  相似文献   

11.
In order to evaluate the ecological consequences and potential mechanisms of specific C compounds on soil microbial processes under climate warming, we injected solutions of two modelled root exudates, 2,6-di-tert-butyl-4-methylphenol (BHT) and 1,2-benzenedicarboxylic acid, dibutyl ester (DBP), respectively, into soil at two concentrations (20 and 1000?µg?g?1 soil). For all treatments, soils amended with the two phenolic compounds were incubated at two temperatures (20°C and 30°C) for 30 days. The responses of soil enzyme activity and microbial property to modelled root exudates to some extent depended on temperature regime, exudation component, and addition concentration. For example, the addition of BHT tended to decrease the soil enzyme activities. However, DBP addition generally increased the two metabolic enzyme activities at 30°C, and tended to decrease the two enzyme activities at 20°C, but a significant reduction was observed only at a high concentration at 20°C. The microbial biomass and enzyme activity were generally lower at 30°C compared to those at 20°C, when averaged across all treatment combinations. Taken together, our results indicated that the amounts and quality of liable root-derived C can differentially affect microbial processes, and various environmental changes will greatly complicate root–microbe–soil interactions in forests.  相似文献   

12.
Phosphates for Pb immobilization in soils: a review   总被引:9,自引:0,他引:9  
In its soluble ionic forms, lead (Pb) is a toxic element occurring in waters and soils mainly as the result of human activities. The bioavailability of lead ions can be decreased by complexation with various materials in order to decrease their toxicity. Pb chemical immobilization using phosphate addition is a widely accepted technique to immobilize Pb from aqueous solution and contaminated soils. The application of different P amendments cause Pb in soils to shift from forms with high availability to the most strongly bound Pb fractions. The increase of Pb in the residual or insoluble fraction results from formation of pyromorphite Pb5(PO4)3X where X = F, Cl, Br, OH, the most stable environmental Pb compounds under a wide range of pH and Eh natural conditions. Accidental pyromorphite ingestion does not yield bioavailable lead, because pyromorphite is insoluble in the intestinal tract. Numerous natural and synthetic phosphates materials have been used to immobilize Pb: apatite and hydroxyapatite, biological apatite, rock phosphate, soluble phosphate fertilizers such as monoammonium phosphate, diammonium phosphate, phosphoric acid, biosolids rich in P, phosphatic clay and mixtures. The identification of pyromorphite in phosphate amended soils has been carried out by different non destructive techniques such as X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray absorption fine structure, transmission electron microscopy and electron microprobe analysis. The effectiveness of in situ Pb immobilization has also been evaluated by selective sequential extraction, by the toxicity leaching procedure and by a physiologically based extraction procedure simulating metal ingestion and gastrointestinal bioavailability to humans. Efficient Pb immobilization using P amendments requires increasing the solubility of the phosphate phase and of the Pb species phase by inducing acid conditions. Although phosphorus addition seems to be highly effective, excess P in soil and its potential effect on eutrophication of surface water, and the possibility of As enhanced leaching remains a concern. The use of mixed treatments may be a useful strategy to improve their effectiveness in reducing lead phyto- and bioavailability.  相似文献   

13.
An extensive series of laboratory experiments was conducted in soil microcosms to study the respiratory response of microorganisms to toxicant amendments within different types of soils. Our analysis of test results demonstrates that coupled biological and environmental factors within soil can be scaled (i.e., commensurably and analogously grouped) by means of two rate constants, one characterizing the diffusion of CO2 in the soil matrix and another the biological production of CO2. The two rate constants were used to classify the impact of metal compounds on diverse soil types and to predict the loss or gain of total respiratory CO2 of amended soils relative to intact soils. This method exemplifies a more general approach, potentially useful for scaling complex physical and biological interactions in environmental assessments.  相似文献   

14.
We examined arsenic (As) uptake by vegetable crops (amaranth, Amaranthus gangeticus, and silverbeet, Beta vulgaris) as affected by As speciation (AsIII and AsV) and their concentrations in nutrient solution. Amaranth and silverbeet were grown in a nutrient solution containing four levels of arsenate (AsV): 0, 1, 5, and 25 mg As/l and three levels of arsenite (AsIII): 0, 5, 10 mg As/l. Both AsV and AsIII are phytotoxic to these crops with the latter being five times more toxic. Amaranth treated with AsIII exhibited As toxicity symptoms within 48 h of exposure and was close to death within 1 week. However, AsV treatment did not show clear toxicity symptoms other than wilting and yield reduction at the highest dose rate of 25 mg AsV/l. The main mechanism used by vegetable crops to tolerate AsV is probably avoidance—limiting As transport to shoots and increasing As accumulation in the root system. When AsV was added to the nutrient solution, the uptake of As in shoots increased and, at the highest dose (25 mg AsV/l), 60 μg As/g DW (3.6 mg/kg FW) accumulated in the edible portion, which exceeds the WHO recommended limit for food stuffs (2 mg/kg FW) as the water contents of the crops were 94%. It is therefore important to determine the nature of the As species and their bio-accessibility. Iron treatment with 0.5 mg NaFe(III)EDTA/l dose decreased silverbeet As uptake by 45% given its affinity to bind As at the root surface or root rhizosphere and so restrict As translocation to the shoots.  相似文献   

15.
Metribuzin, a triazinone herbicide, is heavily used within the expansive Nzoia River Drainage Basin in Kenya for the optimization of sugarcane yields. For field experiments, soils were spiked with metribuzin and amended with filter mud compost and Tithonia diversifolia leaves. Soils with history of metribuzin application (48 months) were also spiked with metribuzin but not amended with the organic materials. Degradation of metribuzin for the three variants was followed for a period of 102 days. Repeated exposure of metribuzin to soil and addition of filter mud compost to soil enhances the degradation of metribuzin with half dissipation times of 31 and 25 days. In soil amended with Tithonia diversfolia leaves, the half dissipation time was 32 days while in the control (unamended non history soil), it was 36 days. Laboratory studies showed that soil sterilization slowed the degradation of metribuzin, with a half dissipation time of 154 days. This confirmed that metribuzin was biochemically degraded in soil by an adapted community of microbes.  相似文献   

16.
• Sulfidation significantly enhanced As(V) immobilization in soil by zerovalent iron. • S-ZVI promoted the conversion of exchangeable As to less mobile Fe-Mn bound As. • Column test further confirmed the feasibility of sulfidated ZVI on As retention. • S-ZVI amendment and magnetic separation markedly reduced TCLP leachability of As. In this study, the influences of sulfidation on zero-valent iron (ZVI) performance toward As(V) immobilization in soil were systemically investigated. It was found that, compared to unamended ZVI, sulfidated ZVI (S-ZVI) is more favorable to immobilize As(V) in soil and promote the conversion of water soluble As to less mobile Fe-Mn bound As. Specifically, under the optimal S/Fe molar ratio of 0.05, almost all of the leached As could be sequestrated by>0.5 wt.% S-ZVI within 3 h. Although the presence of HA could decrease the desorption of As from soil, HA inhibited the reactivity of S-ZVI to a greater extent. Column experiments further proved the feasibility of applying S-ZVI on soil As(V) immobilization. More importantly, to achieve a good As retention performance, S-ZVI should be fully mixed with soil or located on the downstream side of As migration. The test simulating the flooding conditions in rice culture revealed there was also a good long-term stability of soil As(V) after S-ZVI remediation, where only 0.7% of As was desorbed after 30 days of incubation. Magnetic separation was employed to separate the immobilized As(V) from soil after S-ZVI amendment, where the separation efficiency was found to be dependent of the iron dosage, liquid to soil ratio, and reaction time. Toxicity characteristic leaching procedure (TCLP) tests revealed that the leachability of As from soil was significantly reduced after the S-ZVI amendment and magnetic separation treatment. All these findings provided some insights into the remediation of As(V)-polluted soil by ZVI.  相似文献   

17.
不同土壤处理对东南景天吸取土壤中锌和镉效率的影响   总被引:2,自引:1,他引:2  
陈爱胜  林初夏  龙新宪  卢文洲  龙洁  刘勇 《生态环境》2004,13(4):556-559,564
通过盆栽试验,观察分析东南景天植物在未处理及若干用土壤添加剂处理的土壤介质上生长和累积锌、镉的状况。结果显示:除单独使用沸石粉外,所有土壤处理均有利于土壤改良和东南景天的生长。与对照处理相比,赤泥和城市污泥对东南景天累积锌起促进作用,而施用熟石灰却无助或甚至不利于东南景天累积锌。不过,尽管赤泥和城市污泥对东南景天累积镉的效果比熟石灰好,无论施用赤泥、城市污泥或熟石灰,东南景天植物干物质所含的镉均比对照处理高得多。总的来说,赤泥和城市污泥均为改良土壤、促使东南景天生长和超累积锌、镉的良好添加剂;而熟石灰或沸石粉单独使用则对东南景天超累积锌、镉的作用较小。在试验中,将15g污泥、15g沸石和6g赤泥与1000g土壤混和的T7处理对促使东南景天生长和超累积锌、镉最为有效。研究结果表明,在利用东南景天修复酸性锌、镉污染土壤时,通过加入合适的改良剂,调控土壤pH值和营养供给,可大大提高植物修复重金属污染的效果。  相似文献   

18.
植物群落对铜尾矿废弃地土壤微生物量和酶活性的影响   总被引:1,自引:0,他引:1  
以铜尾矿废弃地为对象,研究了铜尾矿废弃地上植物群落发展与表层尾矿微生物量C、N和脱氢酶、过氧化氢碱性磷酸酶和脲酶活性的变化,探讨了植物群落-微生物量C、N_土壤酶活性之间的相互关系.结果表明,随着植物群落的发展,铜尾矿废弃地表层尾矿微生物量和酶活性在不断增加;铜官山老尾矿废弃地白茅群落下表层尾矿(TBM)微生物量和酶活性与杨山冲尾矿废弃地及铜官山新尾矿废弃地表层尾矿微生物量和酶活性存在显著差异性(p<0.05).相关分析表明铜尾矿废弃地表层尾矿微生物量C、N与土壤有机质、总氮之间呈显著正相关(P<0.01);脱氧酶、碱性磷酸酶及脲酶与微生物量C、微生物量N、土壤有机质、总氮之问呈显著正相关(P<0.01),但过氧化氢酶与微生物量C、微生物量N、土壤有机质、总氮之间呈显著负相关(P<0.01).  相似文献   

19.
城市土壤重金属和有机污染物复合污染广泛存在,而城市草坪除草剂的应用使城市绿地土壤的农药污染问题成为了新的关注点。为了准确评价城市绿地重金属污染土壤的农药污染生态风险,选择不同重金属污染程度的土壤为研究对象,以土壤有机氮矿化量、基础呼吸以及土壤酶活性为指标,采用室内模拟试验方法,探讨了草坪除草剂环草隆污染对土壤微生物的生态毒理效应。结果表明:(1)土壤有机氮矿化、基础呼吸、芳基硫酸酯酶和碱性磷酸酶对重金属和环草隆污染响应较为敏感,脲酶和蔗糖酶对重金属和环草隆污染不敏感。(2)环草隆浓度为0~1 000 mg·kg~(-1)范围内,和污染较轻的样点N土壤的碱性磷酸酶活性抑制(激活)率的线性相关关系显著,和污染较为严重的样点D和G土壤的芳基硫酸酯酶活性抑制(激活)率的线性关系显著。(3)土壤中环草隆对样点D和G土壤芳香硫酸酯酶活性、对样点N土壤碱性磷酸酶活性抑制(激活)率的EC10分别为568 mg·kg~(-1)、1 306 mg·kg~(-1)(抑制值)和56 mg·kg~(-1)(激活值)、99 mg·kg~(-1),EC50分别为1 901 mg·kg~(-1)、3 806 mg·kg~(-1)、2 321 mg·kg~(-1)。以上研究结果能够为城市土壤重金属和农药复合污染生态风险评价提供基础数据和技术方法。  相似文献   

20.
The accumulation of arsenic (As) by vegetables is a potential human exposure pathway. The speciation of As in vegetables is an important consideration due to the varying toxicity of different As species. In this study, common Australian garden vegetables were hydroponically grown with As-contaminated irrigation water to determine the uptake and species of As present in vegetable tissue. The highest concentrations of total As were observed in the roots of all vegetables and declined in the aerial portions of the plants. Total As accumulation in the edible portions of the vegetables decreased in the order radish ≫ mung bean > lettuce = chard. Arsenic was present in the roots of radish, chard, and lettuce as arsenate (AsV) and comprised between 77 and 92% of the total As present, whereas in mung beans, arsenite (AsIII) comprised 90% of the total As present. In aerial portions of the vegetables, As was distributed equally between both AsV and AsIII in radish and chard but was present mainly as AsV in lettuce. The presence of elevated As in vegetable roots suggests that As species may be complexed by phytochelatins, which limits As translocation to aerial portions of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号