首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
To meet Scotland’s conservation and legislative requirements to monitor and set management objectives for saltmarsh habitat, a national survey was developed jointly funded by Scottish Natural Heritage and the Scottish Environment Protection Agency. This national survey focussed on developing a fine scale vegetation map of all Scottish saltmarshes over 3 ha, which was digitised using GIS software. A condition monitoring protocol was also developed to assess the health of key ecological parameters of the saltmarsh system. A total of 7,704 ha of coastal habitat was surveyed as part of the project, which included 5,840 ha of saltmarsh vegetation and 1,864 ha of associated vegetation. The condition monitoring protocol results show that targets relating to the presence of built structures and transition integrity are not achieved more frequently than others. Targets for stock grazing intensity; the maintenance of saltmarsh extent; and poaching damage are also not achieved frequently. Further research is required to accurately reflect the condition of pioneer saltmarsh.  相似文献   

2.
Accurate digital elevation models of saltmarshes are crucial for both conservation and management goals. Light detection and ranging (LiDAR) is increasingly used for topographic surveys due to the ability to acquire high resolution data over spatially-extensive areas. This capability is ideally suited to saltmarsh environments, which are often vast, inaccessible systems where topographic variations can be very subtle. Derivation of surface (DSMs) (ground elevation plus vegetation) versus terrain (bare ground elevation) models (DTMs) relies on the ability of the LiDAR sensor to accurately record multiple returns. In saltmarshes however, the dense stands of low (< 1 m) vegetation commonly found precludes the acquisition of more than one return, and the resulting DTM is not different to the DSM. Establishing the offset between ground and vegetation surface in order to correct the LiDAR-derived DTM can be challenging due to the spatial variability in saltmarsh habitats. Here we show the development and application of a habitat-specific correction factor (HSCF) for the Odiel Saltmarshes using a combination of habitat object-based classification (82% overall accuracy) and ground control surveys that reduces the DTM error to within that associated with the LiDAR sensor (average error 0.1 m). We also show that the true accuracy of supplied (unmodified) DTMs can be >0.5 m in saltmarshes dominated by dense vegetation such as Spartina densiflora. In particular, global projections of sea-level rise across the next 80 years (0.18–0.59 m) significantly overlaps this accuracy margin, implying that assessments and modelling of sea-level impacts in saltmarsh systems will likely be erroneous if based on Lidar-derived DTMs. Erroneous assumptions and conclusions can result if the real accuracy of DTMs (bare ground) on vegetated saltmarshes is not considered, and the consequences of the propagation of this misinformation through to management decisions should not be over-looked.  相似文献   

3.
The saltmarsh isopod Sphaeroma rugicauda (Leach) is subjected to widespread diurnal and seasonal temperature fluctuations under natural conditions. Laboratory studies on its activity show that there is a relationship between behaviour activity and exposure temperature between 2.5° and 25°C. Although S. rugicauda has no complex metabolic adaptations, this isopod is able to maintain a rate of aerial oxygen consumption which is similar to that in water within the temperature range 5° to 25°C. The responses of S. rugicauda to changes in environmental temperature are discussed in relation to the seasonal microdistribution of the isopod in the salt-marsh habitat.  相似文献   

4.
This study introduces the monitoring system to be established within this project, it aims to determine changes occurring within forested areas, settlement areas and other land use forms located at the peripheral area of Istanbul during consecutive decades. The first phase of the study was completed in 1998 and published, covering the period from 1984 to 1994. This study is the second phase of the first one and implemented to determine land use changes which have occurred on the same site from 1994 to 2000. Standard topographic maps with 1/25 000 scale, forest management maps with the same scale, results of the previous study, orthophoto maps of the year 2000 that were produced from aerial color photographs of the site with 1/5 000 scale, and 4-band IRS_LISS III multispectral satellite data for July 2000 were used as data. The changes in land use within the study area occurring during a six year period were studied.  相似文献   

5.
6.
This paper focused on the past shoreline change rates along the coastal plain of the Volturno River, in southern Italy, western Mediterranean. A wide database comprising historical maps, aerial photographs, topographic sheets, bathymetric data was used to extract the spatial and temporal information of the coastlines at seven time points. Coastline displacement was calculated for two successive time points and relative surface variation (accretion and erosion) was estimated as well as minimum and maximum accretion/erosion linear values and rates. The surface variation analysis has revealed that the studied coast can be considered homogeneous since the 1970s, whereas it exhibits a variety of shoreline evolutionary trends after that time period. Timing and causes of trends and rates of variation were detected. Based on the estimated shoreline change rates, an appropriate morhodynamic one-line model was applied to predict evolutionary scenarios also in presence of port and defence works. The results obtained strongly emphasize that a successful coastal management requires a constant monitoring of the human-induced changes to account for the variability of rates over time.  相似文献   

7.
8.
The landscape of the conterminous United States has changed dramatically over the last 200 years, with agricultural land use, urban expansion, forestry, and other anthropogenic activities altering land cover across vast swaths of the country. While land use and land cover (LULC) models have been developed to model potential future LULC change, few efforts have focused on recreating historical landscapes. Researchers at the US Geological Survey have used a wide range of historical data sources and a spatially explicit modeling framework to model spatially explicit historical LULC change in the conterminous United States from 1992 back to 1938. Annual LULC maps were produced at 250-m resolution, with 14 LULC classes. Assessment of model results showed good agreement with trends and spatial patterns in historical data sources such as the Census of Agriculture and historical housing density data, although comparison with historical data is complicated by definitional and methodological differences. The completion of this dataset allows researchers to assess historical LULC impacts on a range of ecological processes.  相似文献   

9.
Summary This contribution presents an attempt to measure the path of habitat and vegetation succession in a coastal dune system (Kenfig Burrows, South Wales) using remote sensing and GIS. The loss of slack habitats associated with the continuing stabilization of this dune system is a major cause for concern. These habitats support a range of plant species, including the rare fen orchid,Liparis loeselii, as well as other hydrophytes. A decrease in their areal extent implies a reduction in biodiversity. To quantify the overall rate and spatial dimension of these changes, a series of aerial photographs dating from 1962 to 1994 were digitized and analysed in an image processing system. The resultant maps. transferred to a vector-based GIS, were used to derive a transition matrix for the dune system over this period of time. The results indicate that there has been a marked reduction in the total area of bare sand (19.6% of the dune system in 1962, but only 1.5% in 1994) and a decline in both the areal extent and the number of dune slacks. Over the same period of time, there has been an increase inSalix repens dominated habitats, at the expense of pioneer species. Analysis of the habitat maps, together with hydrological data, within the GIS suggests that even the dry slacks have the potential for further greening and to support invasive species. In terms of habitat management however, there is still scope to restore many of the slacks to their original state. It is estimated that at least 24% of the area occupied by partially and moderately vegetated slacks could be rehabilitated.  相似文献   

10.
Many species are restricted to a marginal or suboptimal fraction of their historical range due to anthropogenic impacts, making it hard to interpret their ecological preferences from modern-day data alone. However, inferring past ecological states is limited by the availability of robust data and biases in historical archives, posing a challenge for policy makers . To highlight how historical records can be used to understand the ecological requirements of threatened species and inform conservation, we investigated sperm whale (Physeter macrocephalus) distribution in the Western Indian Ocean. We assessed differences in information content and habitat suitability predictions based on whale occurrence data from Yankee whaling logs (1792–1912) and from modern cetacean surveys (1995–2020). We built maximum entropy habitat suitability models containing static (bathymetry-derived) variables to compare models comprising historical-only and modern-only data. Using both historical and modern habitat suitability predictions  we assessed marine protected area (MPA) placement by contrasting suitability in- and outside MPAs. The historical model predicted high habitat suitability in shelf and coastal regions near continents and islands, whereas the modern model predicted a less coastal distribution with high habitat suitability more restricted to areas of steep topography. The proportion of high habitat suitability inside versus outside MPAs was higher when applying the historical predictions than the modern predictions, suggesting that different marine spatial planning optimums can be reached from either data sources. Moreover, differences in relative habitat suitability predictions between eras were consistent with the historical depletion of sperm whales from coastal regions, which were easily accessed and targeted by whalers, resulting in a modern distribution limited more to steep continental margins and remote oceanic ridges. The use of historical data can provide important new insights and, through cautious interpretation, inform conservation planning and policy, for example, by identifying refugee species and regions of anticipated population recovery.  相似文献   

11.
The research was based on a comparative study of three representative rural areas (Dovras, Larissa, and Messapia) in Greece. Remote sensing data were collected (maps, aerial photographs) for the landscape analysis and elaborated using GIS linked with economic and social parameters regarding land use. By using a selected core set of landscape indicators, this research aims at providing a useful tool for assessing agroecosystem management at territorial level and hopefully assist decision-making for the promotion of sustainability. The selected tool showed that the study area of Messapia presented the highest level of environmental sustainability, while the area of Dovras showed the best combination of agricultural productivity and landscape management. Results showed that the ecoregions of Dovras, Larissa, and Messapia presented a landscape composed of important ecological function areas in the percentages of 40%, 15%, and 70%, respectively, and of cultivated areas in the percentages of 55%, 71.19%, and 19.75%, respectively.  相似文献   

12.
Coral reef habitat mapping: how much detail can remote sensing provide?   总被引:12,自引:0,他引:12  
The capability of satellite and airborne remote-sensing methods for mapping Caribbean coral reefs is evaluated. Reef habitats were categorised into coarse, intermediate and fine detail, using hierarchical classification of field data (percent cover in 1 m quadrats and seagrass standing-crop). Habitats were defined as assemblages of benthic macro-organisms and substrata and were mapped using the satellite sensors Landsat MSS, Landsat TM, SPOT XS, SPOT Pan and merged Landsat TM/SPOT Pan. Habitats were also mapped using the high-resolution digital airborne sensor, CASI (compact airborne spectrographic imager). To map areas >60 km in any direction with coarse detail, Landsat TM was the most accurate and cost-effective satellite sensor (SPOT XS when <60 km). For maps with intermediate habitat detail, aerial photography (from a comparable study in Anguilla) exhibited similar accuracy to Landsat TM, SPOT XS, SPOT Pan and merged Landsat TM/SPOT Pan. Landsat MSS was consistently the least accurate sensor. Maps from CASI were significantly (p<0.001) more accurate than satellite sensors and aerial photographs. Maps with detailed habitat information (i.e. >9 reef classes) had a maximum accuracy of 37% when based on satellite imagery, but aerial photography and CASI achieved accuracies of 67 and 81%, respectively. Commissioning of new aerial photography does not appear to be a cost-effective option; satellites are cheaper for coarse habitat-mapping, and detailed habitat-mapping can be conducted more accurately and cheaply with CASI. The results will guide practitioners in matching survey objectives to appropriate remote-sensing methods. Received: 11 July 1997 / Accepted: 6 August 1997  相似文献   

13.
Experiences with the reintroduction of the takhi, or Przewalski horse ( Equus ferus przewalskii , in Mongolia can serve as valuable lessons for reintroduction of ungulates in general. We discuss the present taxonomic, historical, and biological evidence and conclude that the takhi should be viewed as a typical steppe herbivore. Its last refuge, the Dzungarian Gobi, should therefore be seen as a marginal habitat because it consists mainly of desert and semidesert. Since 1992 two reintroduction projects have been in the acclimatization phase in Mongolia. Despite promising developments, problems with cooperation, management, habitat choice, insufficient knowledge of the ethology of the species, and current land use within the different project areas could jeopardize the successful reintroduction of takhi. We review the conditions required for a potentially successful ungulate reintroduction. The planning of a reintroduction within the framework of safeguarding an entire ecosystem with an integrated management plan appears essential. Each potential reintroduction site should be assessed thoroughly for its suitability, including size, habitat types, current land use, socioeconomics, legislation, and potential problems. Each site should be provided with one or more acclimatization facilities to harbor genetically and physically healthy, socially adapted animals in biologically sound groups. An organization structure should be established for each reintroduction site. Its objective should be to develop an effective management plan and to carefully monitor the population and its surrounding ecosystem. Special attention should be given to local socioeconomic situations, community participation, and training of staff for management, research, and ranger and warden activities.  相似文献   

14.
Land-use change is considered one of the greatest human threats to marine ecosystems globally. Given limited resources for conservation, we adapted and scaled up a spatially explicit, linked land–sea decision support tool using open access global geospatial data sets and software to inform the prioritization of future forest management interventions that can have the greatest benefit on marine conservation in Vanuatu. We leveraged and compared outputs from two global marine habitat maps to prioritize land areas for forest conservation and restoration that can maximize sediment retention, water quality, and healthy coastal/marine ecosystems. By combining the outputs obtained from both marine habitat maps, we incorporated elements unique to each and provided higher confidence in our prioritization results. Regardless of marine habitat data source, prioritized areas were mostly located in watersheds on the windward side of the large high islands, exposed to higher tropical rainfall, upstream from large sections of coral reef and seagrass habitats, and thus vulnerable to human-driven land use change. Forest protection and restoration in these areas will serve to maintain clean water and healthy, productive habitats through sediment retention, supporting the wellbeing of neighboring communities. The nationwide application of this linked land–sea tool can help managers prioritize watershed-based management actions based on quantitative synergies and trade-offs across terrestrial and marine ecosystems in data-poor regions. The framework developed here will guide the implementation of ridge-to-reef management across the Pacific region and beyond.  相似文献   

15.
Declines of species in fragmented landscapes can potentially be reversed either by restoring connectivity or restoring local habitat quality. Models fitted to snapshot occupancy data can be used to predict the effectiveness of these actions. However, such inferences can be misleading if the reliability of the habitat and landscape metrics used is unknown. The only way to unambiguously resolve the roles of habitat quality and metapopulation dynamics is to conduct experimental reintroductions to unoccupied patches so that habitat quality can be measured directly from data on vital rates. We, therefore, conducted a 15-year study that involved reintroducing a threatened New Zealand bird to unoccupied forest fragments to obtain reliable data on their habitat quality and reassess initial inferences made by modeling occupancy against habitat and landscape metrics. Although reproductive rates were similar among fragments, subtle differences in adult survival rates resulted in λ (finite rate of increase) estimations of <0.9 for 9 of the 12 fragments that were previously unoccupied. This was the case for only 1 of 14 naturally occupied fragments. This variation in λ largely explained the original occupancy pattern, reversing our original conclusion from occupancy modeling that this occupancy pattern was isolation driven and suggesting that it would be detrimental to increase connectivity without improving local habitat quality. These results illustrate that inferences from snapshot occupancy should be treated with caution and subjected to testing through experimental reintroductions in selected model systems.  相似文献   

16.
Protected areas are the core of efforts to conserve biological diversity and zoning uses, and they are used as a tool for their management. Global Positioning Systems (GPS) and Geographic Information System (GIS) have been used to evaluate conflicts between approved uses and actual uses in La Restinga Lagoon National Park in Venezuela (LRLNP). The park (188.6 km2), covers various ecosystems such as coastal lagoons, marine waters and xerophytic vegetation, it is visited by up to 260,000 people visit per year. A GIS, using a base map compiled from 1:25,000 maps was developed. Natural cover was mapped from LANDSAT VII TM images, orthophotomaps and aerial photographs. Spatial use data was collected by field GPS location of any use inside the park during 2 years. Thematic vector maps for each land cover, zoning area, and observed use were created. Maps of zoning and uses were overlapped and new maps for each use-zoning crossing were created. The park contain nine different zoning areas wherein 28 different uses were identified, 18 of them were direct consumptive and non-consumptive uses, occurring on 54% of the park. Tourism transit areas were the most used zones. More than 5,000 people use the park during a high season day. Superimposition of zoning maps with actual use data produced 13 uses taking place in not allowed areas (46% of park area). Most common prohibited use was commercial net fishing, occurring in nearly 40% of the park area. Therefore, identifying human use conflicts and its geographical distribution is a key issue to improve Management Plans as well as identifying hot sites. The GPS-GIS methodology presented here allows Park Rangers to select those areas which could benefit from enhanced supervision with the limited budget available.  相似文献   

17.
Floodplains are among the world's most threatened ecosystems due to the pervasiveness of dams, levee systems, and other modifications to rivers. Few unaltered floodplains remain where we may examine their dynamics over decadal time scales. Our study provides a detailed examination of landscape change over a 60-year period (1945-2004) on the Nyack floodplain of the Middle Fork of the Flathead River, a free-flowing, gravel-bed river in northwest Montana, USA. We used historical aerial photographs and airborne and satellite imagery to delineate habitats (i.e., mature forest, regenerative forest, water, cobble) within the floodplain. We related changes in the distribution and size of these habitats to hydrologic disturbance and regional climate. Results show a relationship between changes in floodplain habitats and annual flood magnitude, as well as between hydrology and the cooling and warming phases of the Pacific Decadal Oscillation (PDO). Large magnitude floods and greater frequency of moderate floods were associated with the cooling phases of the PDO, resulting in a floodplain environment dominated by extensive restructuring and regeneration of floodplain habitats. Conversely, warming phases of the PDO corresponded with decreases in magnitude, duration, and frequency of critical flows, creating a floodplain environment dominated by late successional vegetation and low levels of physical restructuring. Over the 60-year time series, habitat change was widespread throughout the floodplain, though the relative abundances of the habitats did not change greatly. We conclude that the long- and short-term interactions of climate, floods, and plant succession produce a shifting habitat mosaic that is a fundamental attribute of natural floodplain ecosystems.  相似文献   

18.
Encroachment of tall grasses and shrubs in coastal dunes has resulted in loss of vegetation heterogeneity. This is expected to have negative effects on animal diversity. To counteract encroachment and develop structural heterogeneity grazing is a widely used management practice. Here, we aim to functionally interpret changes in vegetation composition and configuration following grazing management on habitat suitability for sand lizards. Aerial photographs taken over a period of 16 years were used to quantify changes in vegetation composition. A GIS-based method was developed to calculate habitat suitability for sand lizards in a spatially explicit manner, encompassing differences in vegetation structure and patch size. From 1987 to 2003 dune vegetation shifted from small patches of moss and sand to larger patches covered by shrubs and grasses. Grazing management did not have any significant effect on the overall level of heterogeneity, measured as habitat suitability for sand lizards. However, on a more local scale highly suitable patches in 1987 were deteriorating whereas unsuitable patches became more suitable in 2003. This inversion results from a broad shift with shrubs being a limiting habitat element in 1987 to sandy patches being the limiting element in 2003. Future changes are believed to negatively impact sand lizards. The habitat suitability model has proven to be a useful tool to functionally interpret changes in coastal dune vegetation heterogeneity from an animal’s perspective. Further research should aim to include multiple species operating on different scale levels to fully capture the natural landscape dynamics.  相似文献   

19.
Abstract: We tested the hypothesis that variation in the sensitivity of animals to habitat change is explained by ecological traits (life‐history traits, trophic level, and mobility). We measured the sensitivity of insectivorous mammals (shrews and bats) and their prey (arthropods active at the soil surface and nocturnal aerial arthropods) to three aspects of agricultural intensification in a matched‐pair experimental design: increased use of agrochemicals (comparison of organic and conventional cereal crops, with pairing for the size of the boundary hedge), change in grassland management from hay to silage (with pairing for the size of the boundary hedge), and increased field size due to hedgerow loss (with boundary‐field comparisons as a proxy). We assessed the sensitivity of taxa as the difference in their relative abundance between pairs of high‐ and low‐intensity sites for each aspect of agricultural intensification. We used phylogenetically informed analyses to explore cross‐species relationships between our measures of sensitivity and seven ecological traits of animals (e.g., trophic level, mobility, and reproductive rate). Several traits were related to the sensitivity of animals to agricultural intensification. These traits were mainly associated with fast life histories (high reproductive output and low trophic level) and low mobility. Trophic level of adults was related to sensitivity to habitat change for all three aspects of agricultural intensification, but the direction of the relationship differed between the three aspects of intensification. The significance of the relationship between other ecological traits and sensitivity to intensification varied for the three aspects of agricultural intensification. Our results show that some ecological traits can be used to preselect taxa that are predicted to be sensitive to habitat change, and their sensitivity can be tested empirically for use as biotic indicator taxa. Understanding which traits are related to sensitivity to habitat change is vital because sensitivity is important in determining a taxon's ability to survive in dynamic environments.  相似文献   

20.
Abstract: Management of amphibian populations to reverse recent declines will require defining high-quality habitat for individual species or groups of species, followed by efforts to retain or restore these habitats on the landscape. We examined landscape-level habitat relationships for frogs and toads by measuring associations between relative abundance and species richness based on survey data derived from anuran calls and features of land-cover maps for Iowa and Wisconsin. The most consistent result across all anuran guilds was a negative association with the presence of urban land. Upland and wetland forests and emergent wetlands tended to be positively associated with anurans. Landscape metrics that represent edges and patch diversity also had generally positive associations, indicating that anurans benefit from a complex of habitats that include wetlands. In Iowa the most significant associations with relative abundance were the length of the edge between wetland and forest ( positive) and the presence of urban land (negative). In Wisconsin the two most significant associations with relative abundance were forest area and agricultural area ( both positive). Anurans had positive associations with agriculture in Wisconsin but not in Iowa. Remnant forest patches in agricultural landscapes may be providing refuges for some anuran species. Differences in anuran associations with deep water and permanent wetlands between the two states suggest opportunities for management action. Large-scale maps can contribute to predictive models of amphibian habitat use, but water quality and vegetation information collected from individual wetlands will likely be needed to strengthen those predictions. Landscape habitat analyses provide a framework for future experimental and intensive research on specific factors affecting the health of anurans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号