首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
We present a narrative account of case studies of the recovery of flowing water systems from disturbance, focusing on the investigators' conclusions about recovery time and the factors contributing to recovery. We restrict our attention to case studies in which the recovery of some biological property of the system has been examined, excluding those that deal only with physical or chemical properties. Although natural processes and rates of recovery are emphasized, studies of reclamation or restoration of damaged ecosystems are included where they contribute to an understanding of recovery processes. For the majority of studies examined, the systems recovered quite rapidly. The most commonly cited reasons for short recovery times were: (1) life history characteristics that allowed rapid recolonization and repopulation of the affected areas, (2) the availability and accessibility of unaffected up-stream and downstream areas and internal refugia to serve as sources of organisms for repopulation, (3) the high flushing rates of lotic systems that allowed them to quickly dilute or replace polluted waters, and (4) the fact that lotic systems are naturally subjected to a variety of disturbances and the biota have evolved life history characteristics that favor flexibility or adaptability. In general, longer recovery times were observed in disturbances, such as channelization, that resulted in alterations to physical conditions. This review also indicates that much of our knowledge of recovery in lotic ecosystems is fragmented and uncoordinated. In addition to establishing the bounds of recovery time, our review identifies some research gaps that need to be filled.  相似文献   

2.
Classic island biogeographic theory predicts that equilibrium will be reached when immigration and extinction rates are equal. These rates are modified by number of species in source area, number of intermediate islands, distance to recipient island, and size of intermediate islands. This general model has been variously modified and proposed to be a stochastic process with minimal competitive interaction or heavily deterministic. Predictive models of recovery (regardless of the end point chosen) have been based on the appropriateness of the MacArthur-Wilson models. Because disturbance frequency, severity, and intensity vary in their effect on community dynamics, we propose that disturbance levels should first be defined before evaluating the applicability of island biogeographical theory. Thus, we suggest a classification system of four disturbance levels based on recovery patterns by primary and secondary succession and faunal organization by primary (invasion of vacant areas) and secondary (remnant of previous community remains) processes. Level 1A disturbances completely destroy communities with no upstream or downstream sources of colonizers, while some component of near surface interstitial or hyporheic flora and fauna survive level 1B disturbances. Recovery has been reported to take from five years to longer than 25 years, when most invading colonists do not have an aerial form. Level 2 disturbances destroy the communities but leave upstream and downstream colonization sources (level 2A) and, sometimes, a hyporheic pool of colonizers (level 2B). Recovery studies have indicated primary succession and faunal structuring patterns (2A) with recovery times of 90–400 days or secondary succession and faunal structuring patterns (2B) with recovery times of 40–250 days. Level 3 disturbances result in reduction in species abundance and diversity along a stream reach; level 4 disturbances result in reduction of abundance and diversity in discrete patches. Both disturbance types lead to secondary succession and secondary faunal organization. Recovery rates can be quite rapid, varying from less than 10 days to 100 or more days. We suggest that island biogeographical models seem appropriate to recovery by secondary processes after level 3 and 4 disturbances, where competition may be an important organizing factor, while models of numerical abundance and resource tracking are probably of better use where community development is by primary succession (levels 1 and 2). Development of predictive recovery models requires research that addresses a number of fundamental questions. These include the role of hydrologic patterns on colonization dynamics, the role of nonaerial colonizers in recovery from level 1 disturbances, and assessment of the impact of changes in the order of invasion by colonizers of varying energetic efficiencies. Finally, we must be able to assemble these data and determine whether information that guides community organization at one level of disturbance can provide insights into colonization dynamics at other levels.  相似文献   

3.
Disturbance regime is a critical organizing feature of stream communities and ecosystems. The position of a given reach in the river basin and the sediment type within that reach are two key determinants of the frequency and intensity of flow-induced disturbances. We distinguish between predictable and unpredictable events and suggest that predictable discharge events are not disturbances. We relate the dynamics of recovery from disturbance (i.e., resilience) to disturbance regime (i.e., the disturbance history of the site). The most frequently and predictably disturbed sites can be expected to demonstrate the highest resilience. Spatial scale is an important dimension of community structure, dynamics, and recovery from disturbance. We compare the effects on small patches (⩽1 m2) to the effects of large reaches at the river basin level. At small scales, sediment movements and scour are major factors affecting the distribution of populations of aquatic insects or algae. At larger scales, we must deal with channel formation, bank erosion, and interactions with the riparian zone that will affect all taxa and processes. Our understanding of stream ecosystem recovery rests on our grasp of the historical, spatial, and temporal background of contemporary disturbance events.  相似文献   

4.
Off-road vehicles increase soil erosion by reducing vegetation cover and other types of ground cover, and by changing the structure of soil. The investigation of the relationship between disturbance from off-road vehicles and the intensity of the activities that involve use of vehicles is essential for water and soil conservation and facility management. Models have been developed in a previous study to predict disturbance caused by off-road vehicles. However, the effect of data on model quality and model performance, and the appropriate structure of models have not been previously investigated. In order to improve the quality and performance of disturbance models, this study was designed to investigate the effects of model structure and data. The experiment considered and tested: (1) two measures of disturbance based on the Vegetation Cover Factor (C Factor) of the Revised Universal Soil Loss Equation (RUSLE) and Disturbance Intensity; (2) model structure using two modeling approaches; and (3) three subsets of data. The adjusted R-square and residuals from validation data are used to represent model quality and performance, respectively. Analysis of variance (ANOVA) is used to identify factors which have significant effects on model quality and performance. The results of the ANOVA show that subsets of data have significant effects on both model quality and performance for both measures of disturbance. The ANOVA also detected that the C Factor models have higher quality and performance than the Disturbance models. Although modeling approaches are not a significant factor based on the ANOVA tests, models containing interaction terms can increase the adjusted R-squares for nearly all tested conditions and the maximum improvement can reach 31%.  相似文献   

5.
To evaluate the relative effect of autecologic factors, site-specific factors, disturbance characteristics, and community structure on the recovery of temperate-stream fish communities, we reviewed case histories for 49 sites and recorded data on 411 recovery end points. Most data were derived from studies of low-gradient third- or fourth-order temperate streams located in forested or agricultural watersheds. Species composition, species richness, and total density all recovered within one year for over 70% of systems studied. Lotic fish communities were not resilient to press disturbances (e.g., mining, logging, channelization) in the absence of mitigation efforts (recovery time >5 to >52 yr) and in these cases recovery was limited by habitat quality. Following pulse disturbances, autecological factors, site-specific factors, and disturbance-specific factors all affected rates of recovery. Centrarchids and minnows were most resilient to disturbance, while salmonid populations were least resilient of all families considered. Species within rock-substrate/nest-spawning guilds required significantly longer time periods to either recolonize or reestablish predisturbance population densities than did species within other reproductive guilds. Recovery was enhanced by the presence of refugia but was delayed by barriers to migration, especially when source populations for recolonization were relatively distant. Median population recovery times for systems in which disturbances occurred during or immediately prior to spawning were significantly less than median recovery times for systems in which disturbances occurred immediately after spawning. There was little evidence for the influence of biotic interactions on recovery rates.  相似文献   

6.
This is an examination of the significance of Gandhi's social philosophy for development. It is argued that, when seen in light of Gandhi's social philosophy, the concepts of appropriate technology (A.T.) and basic needs take on new meaning. The Gandhian approach can be identified with theoriginal "basic needs" strategy for international development (Emmerij, 1981). Gandhi's approach helps to provide greater equity, or "distributive justice," by promoting technology that is appropriate to "basic needs" (food, clothing, shelter, health and basic education). Gandhi's social philosophy (Erikson, 1968; Roy, 1985) has been neglected by most development specialists, with only a few exceptions (e.g., Chambers, 1983; Charles, 1983). This analysis attempts to draw out some aspects of M.K. Gandhi's background and his thinking aboutswadeshi (i.e. local self-reliance and use of local knowledge and abilities) andswaraj (i.e. independent development that leads to equity and justice). Gandhi's ideas, which emerged out of an "Indic" meta-cultural background, are based on an emphasis on equity. Gandhi's syncretic Indic background includes a belief in what Bateson (1972), writing about Bali, Indonesia, has called the "steady state." Development activities should be carried out in a phased manner that does not disturb the beneficial aspects of dynamic equilibrium, but that does promote "positive development." A.T. is particularly useful within the context of a basic needs approach to international development because use of A.T. is probably more likely to lead to equitable growth. The "economic growth" strategy, utilizing "advanced technology" (or even "high tech") exclusively, has caused unemployment and has not led to effective "trickle down," much less "high mass consumption." In many developing countries the poorest 20% of the population are worse off in 1990 than they were in 1980. By making use of the "advantage of backwardness" (Veblen, 1966) and viewing development in terms of long-term impacts, a basic needs approach using A.T. is more likely to lead to a positive impact on third world food systems than a pure "economic growth" strategy.Paper presented at the Guelph Ethics & Technology Conference: Workshop on Technology and Ethical Choice in the Food Systems: Agriculture Workshop on The Impact of Agricultural Technology on Third World Food Systems. October 27, 1989, University of Guelph, Guelph, Ontario, Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号