首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
曝气生物滤池深度处理混合印染废水   总被引:5,自引:0,他引:5  
采用曝气生物滤池(BAF)反应器作为混合印染废水的深度处理工艺,对BAF的启动情况和不同气水比条件下BAF的深度处理效能进行探讨。结果表明,采用同步连续法可实现BAF在15 d内快速启动;当气水比为3∶1时,二级处理出水的处理效果最好,氨氮、COD和色度去除率分别达到77.8%、61.5%和90%。比较BAF中生物膜和活性污泥对二级处理出水的深度处理效能性能时发现,在相同生物量和环境条件下生物膜表现了出更强深度处理能力。  相似文献   

2.
曝气生物活性炭滤池深度处理高浓度氨氮原水   总被引:3,自引:0,他引:3  
实验研究曝气生物活性炭滤池对于高浓度氨氮原水的处理效果以及工艺运行稳定情况。以某自来水厂常规工艺沉淀池出水预加硫酸铵作为研究对象,原水氨氮平均浓度3.67 mg/L,实验条件:温度31.2℃,pH 7.13,滤速8~12 m/h,气水比0.5和1。采用3种不同工况条件进行实验,确定滤速10 m/h和气水比0.5的为最佳运行工况。在此工况下曝气生物活性炭滤池对于氨氮和COD Mn的平均去除率分别达到87.5%和19.2%,亚硝酸盐积累率为0.9%;出水氨氮浓度达到生活饮用水卫生标准GB5749-2006。同时炭滤池的出水浊度相比进水略微上升。  相似文献   

3.
曝气生物滤池处理印染废水二级出水试验研究   总被引:3,自引:0,他引:3  
考察了曝气生物滤池(BAF)对经水解、接触氧化二级处理的印染废水进行深度处理的效果,结果表明,针对达到二级标准的生化处理出水,BAF水力负荷为0.9—1.6m/h,气水比(2~3):1时,COD去除率稳定在50%左右,出水可达到一级排放标准(COD≤100mg/L)。  相似文献   

4.
臭氧预氧化-BAF工艺深度处理垃圾渗滤液   总被引:4,自引:0,他引:4  
以广东省江门市垃圾填埋场垃圾渗滤液为研究对象,对经SBR生化处理和聚合硫酸铁混凝后的垃圾渗滤液,采用臭氧-BAF(曝气生物滤池)工艺进行深度处理。该工艺优点在于:臭氧高级氧化技术使大分子有机污染物降解成二氧化碳和水,或者小分子有机污染物,有利于后继BAF的生化处理,且臭氧处理过后废水的色度明显降低,是废水处理的有效方法之一。而后采用曝气生物滤池对垃圾渗滤液进行进一步处理,对COD进一步去除。结果表明,当臭氧的加入量为150 mg/L,BAF停留时间>4 h,出水COD低于85 mg/L,稳定达到国家GB 16889-1997《生活垃圾填埋污染控制标准》一级排放标准,臭氧氧化法处理每吨垃圾渗滤液的费用为4.8元。  相似文献   

5.
针对抗生素类制药工业废水难处理的特点,将某高效复合微生物菌群负载在以中孔和大孔为主的污泥炭颗粒的表面和孔隙内部,制备得到生物改性污泥炭。采用装填生物改性污泥炭的新型填料曝气生物滤池及向下流、中下部曝气的运行方式对以抗生素类制药废水为主的混合工业废水絮凝沉淀池出水中的主要污染物进行深度处理。结果表明,污泥炭载体在水中发挥2种作用,即吸附功能和载体功能,污泥炭表面及内部孔隙结构非常发达,为不同种类和功能的高效微生物菌群的构建和负载提供了良好的载体;采用粒径为8~10 mm的生物改性污泥炭、HRT 100 min及气水比3∶1,进水COD浓度96~123 mg/L、NH3-N浓度8.8~17.4 mg/L、TP浓度0.390~0.623 mg/L、pH 6~9,新型填料曝气生物滤池对混合工业废水中的COD、NH3-N和TP的平均去除率分别为47.2%、49.2%和35.6%,相比污水厂常规陶料填料生物滤池分别提高了27.9、21.6和12.8个百分点,该工艺处理效果稳定,运营管理简单,为极难生物降解的抗生素类废水为主的混合工业废水的深度处理提供了新思路。  相似文献   

6.
曝气生物滤池处理生活污水研究   总被引:4,自引:3,他引:4  
研究了上向流式曝气生物滤池反应器对生活污水COD和NH3-N的启动性能.结果表明,在启动期间,COD和NH3-N的最佳去除率分别达到了94.8%和93.2%;稳定运行期间,在气水比为3:1的条件下,曝气生物滤池对COD和NH3-N的平均去除率分别为95.9%和93.7%;沿程COD和NH3-N的去除率随着滤层高度的增加...  相似文献   

7.
新型侧向流曝气生物滤池处理生活污水   总被引:2,自引:0,他引:2  
采用以沸石为填料的新型侧向流曝气生物滤池处理生活污水,考察了水力负荷和气水比的影响.结果表明,LBAF在最佳工况气水比10∶1,A、B段曝气量比1∶1,水力负荷0.43 m3/m2·h下,COD、SS、氨氮、总氮和总磷的去除率分别为88.01%、95.18%、78.97%、52.58%和21.02%;COD去除率随COD容积负荷的增加缓慢下降.氨氮、总氮去除率随COD容积负荷的增大明显下降,氨氮去除率随氨氮容积负荷的增大而明显降低.滤池纳污能力强,不易堵塞,可适当延长反冲周期.  相似文献   

8.
曝气生物滤池处理焦化废水脱氮的研究   总被引:3,自引:0,他引:3  
  相似文献   

9.
曝气生物滤池在入库水处理中的应用   总被引:1,自引:0,他引:1  
在低温情况下,对官厅水库入库水进行了曝气生物滤他的生物预处理可行性研究,结果表明,水温低于5℃,该工艺对有机物和氨氮的去除率较常温有所下降,在0.5~5℃时,CODMn平均去除率为33.1%,氨氯平均去除率为43.1%。  相似文献   

10.
联合运用聚铁混凝-臭氧-曝气生物滤池(BAF)对晚期垃圾场的渗滤液进行深度处理。在废水进水COD=601mg/L,色度=400倍时,提出最佳工艺条件:聚铁0.6 mL/L,臭氧用量144 mg/L,BAF停留时间7 h。研究表明,聚铁去除大部分悬浮性有机物,臭氧降解难生物降解有机物并提高废水的可生化性,BAF进一步降解有机物,最终出水COD为75 mg/L,深度处理成本仅为5.5元/t。  相似文献   

11.
探讨了对于难处理的化学药剂废水曝气生物滤池处理的可行性,分析了影响曝气生物滤池处理效果的若干因素,试验结果表明,废水的温度、pH值、气水比及水力停留时间等是影响滤池处理效果的重要因素,控制废水水温在15℃以是,pH在7.3.8.3之间,气水比10:1,水力停留时间大于10h,可以取得较为理想的处理效果,出水CODcr,和BOD5的去除率可分别达到58%和90%以上。  相似文献   

12.
垃圾填埋场渗滤液处理工艺研究进展   总被引:1,自引:0,他引:1  
介绍了垃圾渗滤液的来源和特点,结合近些年的工程实际和实验研究,主要综述了垃圾渗滤液的处理方案和技术,包括回灌法、土地处理法、物化法、生物法以及其他处理方法,在比较这些方法的基础上提出了一些建议。  相似文献   

13.
分别采用脉冲电解法、混凝沉淀法、芬顿氧化法、高铁酸钾氧化法对垃圾渗滤液生化出水进行处理,考察了处理效果。结果表明:铁电极电解法和芬顿试剂氧化法均能脱除垃圾渗滤液的色度,去除有机物质。铁电极电解对色度的去除率可达98.4%,COD去除率可达84.4%;芬顿试剂氧化对色度的去除率可达99%,COD去除率可达85.8%。两种方法均能使出水达到排放标准。同时比较了各种处理方法的运行成本,在达到同样出水标准的前提下,铁电极电解运行成本远低于芬顿试剂氧化,为3.67元/t水,而芬顿试剂药剂成本为8.67元/t水。  相似文献   

14.
通过Fenton法和结合聚合硫酸铁的混凝作用,实现垃圾渗滤液氧化塘出水COD的深度处理;并利用水泥水化产物的凝胶物质,强化COD去除率。30%H2O2投加量为0.75mL/L、七水硫酸亚铁投加量为1.5g/L、n(H2O2):n(Fe^2+)=1.2:1(摩尔比)时,Fenton法对渗滤液COD的去除率可达52%;水灰比为2:1、搅拌24h的水泥水化物将Fenton法的出水pH值从4调至10,该工艺流程总的COD去除率为73.6%,较普通的Ca(OH)2调节法提高9.3%,出水COD可以从进水的1200mg/L降至315mg/L。  相似文献   

15.
垃圾渗滤液是一种成分复杂、毒性较强且难处理的废水之一。实验采用混凝沉淀-厌氧-电解-好氧一体化组合工艺处理垃圾渗滤液,探索了混凝沉淀池和电解池的运行参数对垃圾渗滤液处理效果的影响,并分析了组合工艺对于6种重金属(Cu、Zn、Cd、Cr和Ni)的去除效果。实验结果表明,以PAC为混凝剂PAM为助凝剂时,投加量分别为1.2 g/L和1 mg/L,COD去除率可达57%。电化学工艺阶段,在pH为6.0,电流密度15 mA/cm2,Cl-浓度2 200~2 400 mg/L,电解2.5 h,垃圾渗滤液的COD去除率达55.4%。一体化电生物滤池对于重金属的去除具有明显的效果,Cu、Cd和Zn去除率达100%,Ni去除率超过90%,Cr去除率超过80%,COD整体去除率达94%;NH4+-N去除率达97.2%;TN去除率达73.6%。混凝沉淀-厌氧-电化学-好氧的组合工艺来处理垃圾渗滤液,能够有效地去除水体中的重金属及COD、NH4+-N。  相似文献   

16.
生活垃圾渗滤液处理工艺探讨   总被引:2,自引:0,他引:2  
分析了国内生活垃圾(以下简称垃圾)渗滤液的特点,探讨了一种比较科学的垃圾渗滤液处理工艺:沉淀-厌氧处理-MBR-纳滤处理,并且分析了各段工艺的原理、特点以及其作用。  相似文献   

17.
臭氧催化氧化-BAF组合工艺深度处理抗生素制药废水   总被引:1,自引:0,他引:1  
针对抗生素制药废水组分复杂、毒性强、难生物降解的特点,以Ce负载天然沸石作为催化剂(Ce/NZ),采用臭氧催化氧化-曝气生物滤池(BAF)组合工艺对抗生素制药废水二级生化处理出水进行深度处理。结果表明,Ce/NZ催化剂可显著改善臭氧预处理单元的处理效率,在臭氧进气浓度为50 mg·L−1、臭氧进气量为600 mL·min−1、催化剂用量为1 g·L−1、臭氧反应时间为120 min的条件下,臭氧催化氧化预处理对抗生素制药废水的COD去除率达到43%,平均COD由220 mg·L−1降至125 mg·L−1,BOD5/COD由0.12升至0.28,废水的可生化性得到显著提高。臭氧预处理单元出水采用BAF进行生化处理,在进水平均COD为125 mg·L−1、平均NH4+-N为12 mg·L−1、水力停留时间为4 h、气水比为4∶1的条件下,COD和NH4+-N的平均去除率分别为62%和64%。组合工艺处理后出水平均COD和NH4+-N分别为46 mg·L−1和4.1 mg·L−1,出水水质可以稳定达到《发酵类制药工业水污染物排放标准》(GB 21903-2008)。相较于单独BAF工艺,组合工艺出水COD和NH4+-N平均去除率分别提高了66%和15%,出水水质明显优于单独BAF工艺出水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号