首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mukhi S  Pan X  Cobb GP  Patiño R 《Chemosphere》2005,61(2):178-185
Hexahydro-1,3,5-trinitro-1,3,5-triazine, a cyclonitramine commonly known as RDX, is used in the production of military munitions. Contamination of soil, sediment, and ground and surface waters with RDX has been reported in different places around the world. Acute and subacute toxicities of RDX have been relatively well documented in terrestrial vertebrates, but among aquatic vertebrates the information available is limited. The objective of this study was to characterize the acute toxicity of RDX to larval zebrafish. Mortality (LC50) and incidence of vertebral column deformities (EC50) were two of the end points measured in this study. The 96-h LC50 was estimated at 22.98 and 25.64 mgl(-1) in two different tests. The estimated no-observed-effective-concentration (NOEC) values of RDX on lethality were 13.27+/-0.05 and 15.32+/-0.30 mgl(-1); and the lowest-observed-effective-concentration (LOEC) values were 16.52+/-0.05 and 19.09+/-0.23 mgl(-1) in these two tests, respectively. The 96-h EC50 for vertebral deformities on survivors from one of the acute lethality tests was estimated at 20.84 mgl(-1), with NOEC and LOEC of 9.75+/-0.34 and 12.84+/-0.34 mgl(-1), respectively. Behavioral aberrations were also noted in this acute toxicity study, including the occurrence of whirling movement and lethargic behavior. The acute effects of RDX on survival, incidence of deformities, and behavior of larval zebrafish occurred at the high end of the most frequently reported concentrations of RDX in aquatic environments. The chronic effects of RDX in aquatic vertebrates need to be determined for an adequate assessment of the ecological risk of environmental RDX.  相似文献   

2.
To clarify the response of growth and root functions to low concentrations of ozone (O(3)), rice plants (Oryza sativa L.) were exposed to O(3) at 0.0 (control), 0.05 and 0.10 ppm for 8 weeks from vegetative to early heading stages. Exposure to 0.05 ppm O(3) tended to slightly stimulate the dry weight of whole plants up to 5 weeks and then slightly decrease the dry weight of whole plants. However, these effects were statistically significant only at 6 weeks. Exposure to 0.10 ppm O(3) reduced the dry weight of whole plants by 50% at 5 and 6 weeks, and thereafter the reduction of the dry weight of whole plants was gradually alleviated. Those changes in dry weight can be accounted for by a decrease or increase in the relative growth rate (RGR). The changes in the RGR caused by 0.05 and 0.10 ppm O(3) could be mainly attributed to the effect of O(3) on the net assimilation rate. Root/shoot ratio was lowered by both 0.05 and 0.10 ppm O(3) throughout the exposure period. The root/shoot ratio which had severely decreased at 0.10 ppm O(3) in the first half period of exposure (1-4 weeks) became close to the control in the latter part of exposure (5-8 weeks). Time-course changes in NH(4)-N root uptake rate were similar to those in the root/shoot ratio especially for 0.10 ppm O(3). On the other hand, root respiration increased from the middle to later periods. Since it is to be supposed that plants grown under stressed conditions change the ratio of plant organ weight to achieve balance between the proportion of shoots to roots in the plant and their activity for maintaining plant growth, these changes in root/shoot ratio and nitrogen uptake rate under long-term exposure can be considered to be an adaptive response to maintain rice growth under O(3) stress.  相似文献   

3.
Chironomus riparius Meigen were exposed to 0, 0.01, 0.1, 0.5, 0.75 and 1.0 ppm lindane for 48 h as fourth instar larvae. Exposure had no effect on glutathione-S-transferase (GST) activity in larvae snap-frozen immediately following exposure. In contrast, exposure had longer-term consequences affecting developmental parameters. Concentrations above 0.5 ppm lindane affected larval behaviour, reduced adult body size and fecundity and delayed emergence times. The lack of significant change in GST activity when life history characters were affected by high concentrations of lindane, suggests that in C. riparius, GST is not a sensitive biomarker of pesticide exposure or effect.  相似文献   

4.
An ex vivo gill EROD assay was applied in Atlantic cod (Gadus morhua) as a biomarker for waterborne CYP1A-inducing compounds derived from oil production at sea. Exposure to nominal concentrations of 1 ppm or 10 ppm North Sea crude oil in a static water system for 24 h caused a concentration-dependent gill EROD induction. Further, exposure of cod for 14 days to environmentally relevant concentrations of produced water (PW, diluted 1:200 or 1:1000) from a platform in the North Sea using a flow-through system resulted in a concentration-dependent induction of gill EROD. Crude oil (0.2 ppm) from the same oil field also proved to induce EROD. Finally, gill EROD activity in cod caged for 6 weeks at 500-10 000 m from two platforms outside Norway was measured. The activities in these fish were very low and did not differ from those in fish caged at reference sites.  相似文献   

5.
Given the potent carcinogenic effects of most N-nitroso compounds, the reductive transformation of the common explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to a group of N-nitroso derivatives, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) in the environment have caused concerns among the general public. Questions are arising about whether the same transformations also occur in mammals, and if true, to what extent. This study investigated the N-nitroso derivatives production in the deer mouse GI tract following RDX administration. Findings verified that such transformations do occur in the mammalian GI tract at notable levels: the average MNX concentrations in deer mice stomach were 85 microg/kg and 1318 microg/kg for exposure to 10mg/kg and 100mg/kg diet, respectively. DNX in stomach were 217 microg/kg for the 10mg/kg dose group and 498 microg/kg for the 100mg/kg dose group. Changes in other toxic endpoints including body weight gain, food consumption, organ weight, and behavior were also reported.  相似文献   

6.
Adrian NR  Arnett CM 《Chemosphere》2007,66(10):1849-1856
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and 2,4,6-trinitrotoluene (TNT) are explosives that are frequently found as environmental contaminants on military installations. Hydrogen has been shown to support the anaerobic transformation of these explosives. We investigated ethanol and propylene glycol as electron donors for providing syntrophically produced H2 for stimulating the anaerobic biodegradation of explosives in contaminated soil. The study was conducted using anoxic microcosms constructed with slurries of the contaminated soil and groundwater. The addition of 5mM ethanol and propylene glycol enhanced the biodegradation of RDX and HMX relative to the control bottles. Ethanol was depleted within about 20 days, resulting in the transient formation of hydrogen, acetate, and methane. The hydrogen headspace concentration increased from 8 ppm to 1838 ppm before decreasing to background concentrations. Propylene glycol was completely degraded after 15 days, forming hydrogen, propionate, and acetate as end-products. The hydrogen headspace concentrations increased from 56 ppm to 628 ppm before decreasing to background concentrations. No methane formation was observed during the incubation period of 48 days. Our findings indicate the addition of ethanol and propylene to the aquifer slurries increased the hydrogen concentrations and enhanced the biotransformation of RDX and HMX in the explosive-contaminated soil.  相似文献   

7.
Chlorinated diphenyl ethers (CDE's) are environmental contaminants that have been found in Great Lakes fish. Because of the paucity of toxicity data and potential for human exposure, the present short-term study was conducted to assess their potential toxic effects. Groups of 10 male and 10 female rats were administered the three CDE congeners (2,2',4,4',5-pentachlorodiphenyl ether (PCDE), 2,2',4,4',5,5'-hexachlorodiphenyl ether (HCDE), 2,2',3,4,4',6,6'-heptachlorodiphenyl ether (HPCDE] in diets at levels of 0.5, 5.0, 50 or 500 ppm for a period of 4 weeks. Decreased food consumption was observed with male and female rats fed the diet containing 500 ppm HPCDE. Treatment with the three isomers at the highest dose level produced an increase in liver weight in both sexes. While administration of PCDE produced an increase in hepatic aminopyrine demethylase activity, HCDE caused a significant increase in aminopyrine demethylase, aniline hydroxylase and ethoxyresorufin de-ethylase activities. HPCDE caused a significant increase in ethoxyresorufin de-ethylase activity. HPCDE at the highest dose level also caused a significant reduction in circulating lymphocytes in male rats. The 3 CDE's produced mild and adaptative histological changes in the liver and thyroid, but only HPCDE elicited mild changes in the thymus, bone marrow, and spleen. The above data indicate that HPCDE is immunosuppressive and that all three CDE isomers are considered to be moderately toxic in rats. The no-observable effects levels appear to be between 5-50 ppm in diet (0.36-3.0 mg/kg b.w.) for the three CDE's.  相似文献   

8.
Ronen Z  Yanovich Y  Goldin R  Adar E 《Chemosphere》2008,73(9):1492-1498
The aim of this study was to explore biodegradation potential of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a deep contaminated unsaturated zone over Israel's coastal aquifer. While anaerobic biodegradation potential was observed throughout the profile down to the water table at a depth of 45 m, aerobic biodegradation was limited to the surface of the unsaturated zone. Traces of nitroso-RDX intermediates were detected in the soil samples, indicating possible in situ activity. Polymerase chain reaction and denaturing gradient gel electrophoresis analysis revealed that the microbial population in the soil consisted of protobacteria, but no known RDX degraders were detected. However, a 16S rRNA gene sequence most similar to Sphingomonas sp. was detected at all depths. Biodegradation rates were faster in the surface (0 and 1m) versus deeper soil samples (22 and 45 m) and were not affected under anaerobic conditions by the presence of nitrate, indicating a concurrent reduction of both compounds. RDX half-life in the surface soil was mostly dependent on carbon content and to lesser extent on soil moisture. Biomineralization of RDX to CO(2) was confirmed by incubating surface soil with (14)C-labeled RDX. An aerobic RDX-degrading bacterium, identified as Gordonia sp., was isolated from the soil: it degraded RDX aerobically and produced 4-nitro-2,4-diazabutanal. This study, the first to explore RDX biodegradation in the deep vadoze zone, indicates biodegradation potential throughout the profile, which is likely to support natural attenuation.  相似文献   

9.
Best EP  Geter KN  Tatem HE  Lane BK 《Chemosphere》2006,62(4):616-625
The objectives of this study were to provide data that can be used to predict exposure-based effects of RDX in aged soil on multiple endpoint organisms representing two trophic levels. These data can be used for defining criteria or reference values for environmental management and conducting specific risk assessment. Dose-response experiments formed the basis for the evaluation of toxic effects and transfer of contaminants from soil into two trophic levels. Long-term exposure tests were conducted to evaluate chronic, sublethal, toxicity and transfer of aged soil-based explosives, with RDX as main contaminant. In these tests, plants were exposed for 55 days in the greenhouse, biomass was determined and residues of explosives parent compounds and RDX metabolites were analyzed using HPLC techniques. Worms were exposed for 28 days (Eisenia fetida) and 42 days (Enchytraeus crypticus) in the laboratory, biomass and number were determined, and tissues were analyzed for explosives compounds. The plants tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of Lolium perenne was not significantly related to soil-RDX concentration, while biomass of Medicago sativa significantly increased. No screening benchmark for RDX in soil for plants was calculated, since concentrations up to 1,540 mg kg(-1) soil failed to reduce biomass by 20% as required for a LOEC. RDX, RDX-metabolite MNX, and accompanying HMX concentrations in plants were significantly related to concentrations in soil after 55 days of exposure (RDX: R(2) = 0.77-0.89; MNX R(2) = 0.53-0.77; HMX: R(2) = 0.67-0.71). The average bioconcentration factors (BCF) were for RDX 17 in L. perenne and 37 in M. sativa, and for HMX 2 in L. perenne and 44 in M. sativa. The worms also tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of E. fetida adults decreased with soil-RDX concentration, and a LOEC of 1,253 mg kg(-1) soil-DW was estimated. RDX concentrations in E. fetida were significantly related to concentrations in soil after 28-day exposure (R(2) = 0.88). The average BCF in E. fetida for RDX was 1. Because in response to exposure to RDX-contaminated soil the RDX concentrations in plants increased initially and decreased subsequently, while those in worms increased continuously, RDX in worm tissues may accumulate to higher concentrations than in plant tissues, regardless of the low average BCF for worms.  相似文献   

10.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a potential human carcinogen, and its contamination of subsurface environments is a significant threat to public health. This study investigated abiotic and biological degradation of RDX in contaminated aquifer material. Anoxic batch systems were started with and without pre-aeration of aquifer material to distinguish initial biological RDX reduction from abiotic RDX reduction. Aerating the sediment eliminated chemical reductants in the native aquifer sediment, primarily Fe(II) sorbed to mineral surfaces. RDX (50 μM) was completely reduced and transformed to ring cleavage products when excess concentrations (2 mM) of acetate or lactate were provided as the electron donor for aerated sediment. RDX was reduced concurrently with Fe(III) when acetate was provided, while RDX, Fe(III), and sulfate were reduced simultaneously with lactate amendment. Betaproteobacteria were the dominant microorganisms associated with RDX and Fe(III)/sulfate reduction. In particular, Rhodoferax spp. increased from 21% to 35% and from 28% to 60% after biostimulation by acetate and lactate, respectively. Rarefaction analyses demonstrated that microbial diversity decreased in electron-donor-amended systems with active RDX degradation. Although significant amounts of Fe(III) and/or sulfate were reduced after biostimulation, solid-phase reactive minerals such as magnetite or ferrous sulfides were not observed, suggesting that RDX reduction in the aquifer sediment is due to Fe(II) adsorbed to solid surfaces as a result of Fe(III)-reducing microbial activity. These results suggest that both biotic and abiotic processes play an important role in RDX reduction under in situ conditions.  相似文献   

11.
Alkylphenol (AP) metabolites were characterized in the bile of Atlantic cod (Gadus morhua L.) after exposure to nine individual compounds (10mg/kg fish), 2-methylphenol (2-MP), 4-methylphenol (4-MP), 3,5-dimethylphenol (3,5-DMP), 2,4,6-trimethylphenol (2,4,6-TMP), 4-tert-butylphenol (4-t-BP), 4-tert-butyl-2-methylphenol (4-t-B-2-MP), 4-n-pentylphenol (4-n-PP), 4-n-hexylphenol (4-n-HexP) and 4-n-heptylphenol (4-n-HepP), and a mixture (total dose; 13.5 mg/kg fish) of the nine APs by inter-muscular injection. The degree of alkylation ranged from methyl (C1) to heptyl (C7) and represents the types of APs present in produced water. Fish bile was collected on day 4 and 16 (exposure groups 2-MP, 3,5-DMP, 2,4,6-TMP and 4-t-B-2-MP) following exposure. Characterization of major metabolites was accomplished by enzymatic de-conjugation and analysis by high performance liquid chromatography connected to a fluorescence detector (HPLC-F) acquiring at ex/em 222/306 nm. Two solid phase extraction (SPE) columns were evaluated for clean-up of samples prior to analysis. Independent of alkyl homologue, the glucuronide conjugated APs were the most abundant metabolites (73-100%), whereas sulfates, glucosides and unchanged compounds were excreted in amounts of 0-21%, 0-6.1% and 0-6.3%, respectively. The total concentration of measured metabolites in the bile, determined as their respective APs after de-conjugation, increased with increasing degree of alkylation (3.2+/-2.6 microg/g bile for 2-MP and 571+/-81 microg/g bile for 4-n-HepP) after exposure to an equal dose of AP. Comparison of metabolite concentrations in bile sampled 4 and 16 days after exposure, showed that the levels of 2-MP, 2,4,6-TMP and 4-t-B-2-MP were reduced by 55%, 30% and 45%, respectively whereas 3,5-DMP increased by 25% (not significant). This study suggests that analysis of de-conjugated metabolites in fish bile can be used to monitor AP exposure to fish, due to the relatively high and persistent level of these compounds. However, although HPLC-F is suitable for laboratory exposures, it might not be sufficient selective for field studies.  相似文献   

12.
Studies on plant-mediated fate of the explosives RDX and HMX   总被引:2,自引:0,他引:2  
The fate of the explosives RDX and HMX on exposure to plants was investigated in 'natural' aquatic systems of Myriophyllum aquaticum for 16 days, and in axenic hairy root cultures of Catharanthus roseus for > or = 9 weeks. Exposure levels were: HMX, 5 mg/l; and RDX, approximately 8 mg/l. Exposure outcomes observed include: HMX, no transformation by aquatic plants, and minimal biological activity by axenic roots; and RDX, removal by both plant systems. In the case of RDX exposure to axenic roots, since 14C-RDX was included, removal was confirmed by the accumulation of 14C-label in the biomass. The intracellular 14C-label in these RDX studies was detected in two forms: intact RDX and bound unknown(s).  相似文献   

13.
The sublethal and chronic effects of the environmental contaminant and explosive octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in artificial soil were assessed using the earthworm (Eisenia andrei). Based on various reproduction parameters (total and hatched number of cocoons, number of juveniles and their biomass), fecundity was reduced at the different concentrations of HMX tested (from 280.0 +/- 12.3 to 2502.9 +/- 230.0 mg kg-1 dry soil) in spiked artificial soil (LOEC: 280.0 +/- 12.3 mg kg-1 dry soil). The growth of adult E. andrei was also reduced at the different concentrations tested, though no mortality occurred, even at the highest tested concentrations. The number of juveniles produced was correlated with the number of total and hatched cocoons, and the biomass of juveniles was correlated with the number of cocoons. Pooled results of these and earlier studies on explosives (TNT, RDX) using the E. andrei reproduction test confirm that effects of HMX on cocoon production are indicative of some reproductive consequences (number of juvenile and their biomass), whereas adult growth, in general, does not correlate strongly with change in reproduction capacity.  相似文献   

14.
This study investigated whether perinatal exposure to diuron [3-(3,4-dichlorophenyl)-1-1-dimethylurea] might exert adverse effects on rat lymphoid organs. Pregnant Sprague-Dawley (SD) rats were exposed to diuron at 500, 750 or 1250 ppm in the diet from gestational days (GD) 12–21 and during lactation. At postnatal day (PND) 42, male pups were euthanized and thymus, spleen, mesenteric lymph node and femur were collected for histopathological analysis. Food consumption and body weight gain were significantly reduced in dams exposed to 1250 ppm during gestation period. Also, Diuron at 750 and 1250 ppm produced: (1) increased relative spleen weight associated histologically with severe congestion in red pulp, (2) enhanced extramedullary hematopoiesis and hemosiderosis as well as (3) depletion of lymphoid follicles in white pulp. Flow cytometric analysis revealed a significant reduction in B lymphocytes (CD45RA+) in male pups but T lymphocytes (CD4+, CD8+ and CD4+/CD8+) were not markedly affected. Thus, data suggest that Diuron-induced maternal toxicity in dams exposed to high dose and perinatal exposure to this herbicide produced spleen toxicity as evidenced by a reduction in B lymphocyte number in male SD pups.  相似文献   

15.
Cogun HY  Kargin F 《Chemosphere》2004,55(2):277-282
In the present study, effect of pH on the mortality and accumulation of copper in various tissue and organs of Oreochromis niloticus were tested at varying concentrations of copper in the medium and over different periods of time. Experimental animals were exposed to pH 5.5, 7.8 and 9.5 and 0.1, 0.5, 1.0 and 5.0 ppm copper over periods of 7, 15 and 30 days in liver, gills and muscle were determined using atomic absorption spectrophotometric techniques. The rate of mortality at 1.0 and 5.0 ppm Cu was 100% after 7 days of exposure at pH 5.5 while at 5.0 ppm Cu was 66% after 30 days of exposure at pH 7.8. No mortality was observed in any of the copper concentrations tested at pH 9.5. In all pH levels, tissue accumulation of copper increased with increasing concentrations of copper in the medium at a given exposure period. In all pH values tested, highest levels of copper were found in the liver of O. niloticus, followed by the gills and muscle tissues. Accumulation of copper in all tissues were higher at pH 5.5 compared with the other pH values in all the conditions tested.  相似文献   

16.
This study investigated whether perinatal exposure to diuron [3-(3,4-dichlorophenyl)-1-1-dimethylurea] might exert adverse effects on rat lymphoid organs. Pregnant Sprague-Dawley (SD) rats were exposed to diuron at 500, 750 or 1250 ppm in the diet from gestational days (GD) 12-21 and during lactation. At postnatal day (PND) 42, male pups were euthanized and thymus, spleen, mesenteric lymph node and femur were collected for histopathological analysis. Food consumption and body weight gain were significantly reduced in dams exposed to 1250 ppm during gestation period. Also, Diuron at 750 and 1250 ppm produced: (1) increased relative spleen weight associated histologically with severe congestion in red pulp, (2) enhanced extramedullary hematopoiesis and hemosiderosis as well as (3) depletion of lymphoid follicles in white pulp. Flow cytometric analysis revealed a significant reduction in B lymphocytes (CD45RA+) in male pups but T lymphocytes (CD4+, CD8+ and CD4+/CD8+) were not markedly affected. Thus, data suggest that Diuron-induced maternal toxicity in dams exposed to high dose and perinatal exposure to this herbicide produced spleen toxicity as evidenced by a reduction in B lymphocyte number in male SD pups.  相似文献   

17.
Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes.  相似文献   

18.
Seventeen non-smoking young men served as subjects to determine the alteration in carboxyhemoglobin (COHb) concentrations during exposure to 0 or 9 ppm carbon monoxide for 8 hours (CO) at sea level or an altitude of 2134 meters (7000 feet) in a hypobaric chamber. Nine subjects rested during the exposure and 8 exercised for 10 minutes of each exposure hour at a mean ventilation of 25 L (BTPS). All subjects performed a maximal aerobic capacity test at the completion of their respective exposures. Carboxyhemoglobin concentrations fell in all subjects during their exposures to 0 ppm CO at sea level or 2134 m. During the 8-h exposures to 9 ppm CO, COHb rose linearly from approximately 0.2 percent to 0.7 percent. No significant differences in uptake were found whether the subjects were resting or intermittently exercising during their 8-h exposures. COHb levels attained were similar at both sea level and 2134 m. Maximal aerobic capacity was reduced approximately 7-10 percent consequent to altitude exposure during 0 ppm CO exposures. These values were not altered following exposure for 8 h to 9 ppm CO in either the resting or exercising subjects.  相似文献   

19.
Zhang C  Hughes JB 《Chemosphere》2003,50(5):665-671
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a military high explosive, is becoming an increasingly important pollutant in the US. The cleanup of RDX-contaminated soil and groundwater has been a serious challenge due to its recalcitrance in the environment. This study was conducted to determine the biodegradation kinetics of RDX by crude cell extract of Clostridium acetobutylicum (ATCC 824), and to examine whether this bacterium will carry out reductive transformation pathways similar to the transformation of 2,4,6-trinitrotoluene (TNT), 2,4- and 2,6-dinitrotoluenes (DNTs) we have reported previously. Batch studies on the anaerobic transformation of RDX were conducted in serum bottles with U-ring-14C-RDX. RDX and its transformation products were quantified by HPLC and qualified by LC/ MS interfaced to two soft ionization techniques--an atmospheric pressure ionization and an electron spray ionization (API-ES). Results demonstrated that C. acetobutylicum is capable of transforming RDX with H2 as the electron donor. The transformation followed a zero-order kinetics and the rates increased with increasing H2. RDX was transformed into several polar intermediates that could not be separated by reverse-phase HPLC and its molecular ions were unstable under the condition of commonly used electron impact detector. Using a polar and water immiscible solvent (ethyl acetate) and the softer MS ionization techniques, mass spectroscopy detected the presence of several RDX derivatives including mononitroso-, monohydroxylamino-, mononitrosomonohydroxylamino-, monoamino-, diamino-, and triamino-compounds. The presence of hydroxylamino compounds is analogous to the transformation of TNT and DNTs we elucidated previously.  相似文献   

20.
Smith JN  Liu J  Espino MA  Cobb GP 《Chemosphere》2007,67(11):2267-2273
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transforms anaerobically into N-nitroso compounds: hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX). Exposure to these N-nitroso metabolites may occur in areas contaminated with explosives, as anaerobic degradation occurs via some bacteria and is one remediation strategy used for RDX. Few papers report acute oral toxicity and none have evaluated age dependent toxicity of RDX or its N-nitroso metabolites. Median lethal dose (LD50) was determined in deer mice (Peromyscus maniculatus) of three age classifications 21 d, 50 d, and 200 d for RDX, MNX, and TNX using the US EPA up-and-down procedure (UDP). Hexahydro-1,3,5-trinitro-1,3,5-triazine and N-nitroso metabolites caused similar overt signs of toxicity. Median lethal dose for 21 d deer mice were 136, 181, and 338 mg/kg for RDX, MNX, and TNX, respectively. Median lethal dose for 50 d deer mice were 319, 575, and 338 mg/kg for RDX, MNX, and TNX, respectively. Median lethal dose for 200 d deer mice were 158, 542, and 999 mg/kg for RDX, MNX, and TNX, respectively. These data suggest that RDX is the most potent compound tested, and age dependent toxicity may exist for all compounds and could play a role in RDX and RDX N-nitroso metabolite ecological risk evaluation of terrestrial wildlife at RDX contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号