首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
森林环境中空气负离子浓度分级标准   总被引:42,自引:0,他引:42       下载免费PDF全文
利用在不同森林环境中测得的大量空气负离子浓度数据,采用标准对数正态变换法,制定出森林环境中空气负离子浓度的分级评价标准.将森林环境中空气负离子浓度水平分为6个等级,即大于3000个/cm3为Ⅰ级,2000~3000个/cm3为Ⅱ级,1500~2000个/cm3为Ⅲ级,1000~1500个/cm3为Ⅳ级,400~1000个/cm3为Ⅴ级,400个/cm3以下为Ⅵ级.利用该标准,对北京小龙门森林公园及广州流溪河国家森林公园主要景区空气负离子状况进行了评价.  相似文献   

2.
基于2019年浙江省89个站的负氧离子浓度监测结果,结合气象及环境观测资料,开展了负氧离子浓度分布及气象和环境因子对负氧离子浓度的影响分析.结果表明:浙南和浙西的山区负氧离子浓度高,年平均浓度基本均在1000个/cm3以上;浙北平原浓度相对较低,大部分站年平均浓度在500~1000个/cm3左右.负氧离子浓度基本表现为高山林区>浅山景区>海岛、水体附近>郊区、平原公园>城镇.环境因素和气象因子对负氧离子浓度有一定的影响,负氧离子浓度与AQI、PM2.5、PM10、SO2、NO2、CO等环境因子呈现出明显的负相关性.随着日照时数的增加,负氧离子浓度基本呈现出明显增大的变化趋势.当日平均气温在2~15℃和23~31℃时,随着气温的上升,负氧离子浓度基本呈现增大的变化趋势.50%~75%为相对适宜的相对湿度,对应的负氧离子浓度也较高.降水量越大、风速越大,负氧离子浓度基本呈现出升高的变化趋势;但当雨量达到暴雨级别、风速达到强风级别以上时,...  相似文献   

3.
刘灏  王颖  王思潼  刘扬  李博 《中国环境科学》2021,41(8):3529-3538
首先利用后向轨迹模式(HYSPLIT)模拟了天水市2017~2019年冬季后向轨迹,分析了50,200,500和1000m 4个不同高度以及500m高度不同聚类数量对路径输送聚类统计结果的影响,并以500m高度四个季节的后向轨迹进行聚类分析,进一步运用权重潜在源贡献分析法(WPSCF),探讨了研究期间天水市细颗粒物的潜在源区及不同源区对天水市颗粒物浓度的贡献,结果表明,(1)起始点高度为500m时,颗粒物浓度极值比和极值差均较大,聚类结果最具代表性;(2)不同聚类数量分析结果表明,按照总空间变化(Total spatial variation,TSV)显著增加的原则选取的聚类数量较少,且能反映不同方向的轨迹输送特征;(3)天水市不同季节的轨迹聚类结果表明,冬季来自陕西南部的东南路径是PM2.5污染程度最高的路径,该路径下PM2.5浓度为78.2μg/m3,春季西北路径的颗粒物浓度最高,PM10和PM2.5的平均浓度分别是127.9~129.9和40.6~41.0 μg/m3,夏秋季节不同路径的颗粒物浓度相差不大.  相似文献   

4.
基于吉林省 2015~2017 年 32 个国控站点逐小时的近地面臭氧 (O3) 和气象在线监测数据,研究了该地区 9 地市 O3 污染的年际变化、时空特征、气象影响和来源传输。结果表明,2015~2017 年吉林省 9 城市 O3 日最大 8 小时滑动浓度 (简称 MDA8) 第 90% 分位呈显著上升趋势;高 O3 浓度 (O3MDA8 浓度>160 μg/m3) 主要分布在以“四平-长春-吉林”为中心城市的水平条带上,并逐步向周围其他城市扩展和递减;O3 季节变化呈单峰型,峰值浓度出现在 5~8 月。在研究时段内,采暖季的大气 O3 浓度明显低于非采暖季,但其浓度呈持续上升趋势,这可能与燃煤、机动车排放和灰霾天气改善有关;当风速为 2~6 m/s,风向为正南和东南方向时,各监测站点 O3 污染较为严重,表明除本地化学反应生成外,来自各地监测点位正南和东南方向的外来传输也会提高本地...  相似文献   

5.
基于北京市34个空气质量监测站点收集的5种主要污染物浓度(NO2、CO、O3、PM2.5、PM10)数据,对2018~2020年北京市5个交通站点污染物浓度进行分析,并与11个城市评价站点及2个背景点(密云水库、定陵)进行对比.结果表明:(1)3a间各污染物浓度年际变化总体呈下降趋势,除PM10外,交通站点各污染物浓度降幅均大于城市评价站点.2020年交通站点NO2降幅最大,比2018年下降了31.37%.除个别时期外,5种污染物浓度在交通站点比城市评价站点普遍高出3%~50%.且以NO2最为突出.(2)2018~2020年各监测站点不同污染物浓度的季节变化特征表现不同.O3夏季高、冬季低,最高值出现在2018年6月;其余4种污染物浓度基本表现为冬季高、夏季低;2018年3月受沙尘及不利气象条件影响,污染物浓度出现了极高值.(3)为研究新冠肺炎疫情对交通污染排放的影响,比较了5种污染物的浓度变化.与2019年同期相比,疫情后三个阶段的NO2下降最为显著.交通站点NO2、CO、PM2.5平均降幅比城市评价站点高出了4.81%、10.21%、4.38%.  相似文献   

6.
NH3在空气中主要转化为NH4+,NH4+和SO42-、NO3-和Cl-等酸根离子反应生成的二次气溶胶,是环境空气中PM2.5的重要组成成分。为探索上海西南区域环境空气中氨的污染特征、来源和对PM2.5排放的影响,该研究选择城市居住区站点A和农村居住区站点B利用差分吸收光谱法(DOAS法)氨监测仪进行为期1 a(2018年3月-2019年2月)的NH3监测,并在站点A同步进行PM2.5的测定。结果表明:上海西南区域中大气NH3日均浓度为6.5μg/m3,1 h平均浓度范围0.4~76.0μg/m3;NH3浓度夏季>秋季>春季>冬季;NH3日变化浓度呈现单峰特...  相似文献   

7.
在城市内选取包括城市背景空气、市区以小型客车为主的路边和大量大型货车通行的3个路边采样点进行了空气中PM2.5和PM10的采集,建立了利用超高效液相色谱串联三重四级杆质谱仪(UPLC-MS/MS)对颗粒物中苯并噻唑及其5种衍生物(BT、2-NH2-BT、2-OH-BT、MBT、MTBT)的检测方法,并对其污染特征及暴露风险进行了分析.结果显示,3点位PM2.5和PM10样品中均为BT的浓度最高,占总浓度的44.4%~55.2%;各化合物浓度呈路边环境高于城市背景环境,表明高制动频率导致路边空气中含有较多的轮胎磨损颗粒物;除2-NH2-BT外,其它4种BTs化合物与PM2.5和PM10的浓度之间具有较好的线性关系,表明二者具有相同的来源;各化合物在PM2.5和PM10中浓度的比值(PM2.5/PM10)范围为0.41~0.95,说明BTs更易于富集在较细颗粒物中或轮胎磨损排放的细颗粒较多.暴露评价结果显示,路边工作者对BTs的日呼吸暴露量大于其他人,可能具有更高的健康风险其中BT的贡献量最大.  相似文献   

8.
分析揭示黄河流域城市PM2.5时空分异特征,对打赢大气污染防治攻坚战,推动黄河流域空气污染跨区域协同治理机制的建立和完善,以及流域绿色高质量发展具有重要意义.本文以中国空气质量在线监测分析平台456个监测站点的PM2.5浓度监测数据为基础,运用莫兰指数和标准差椭圆方法分析黄河流域70个城市2015—2021年PM2.5的时空分异特征、演变格局,并基于皮尔逊相关系数分析法对其污染源进行解析.结果表明:(1)PM2.5浓度的月度、季节变化特征明显.月均浓度呈底部宽缓的“U”型分布,12月或1月达到最大值;冬季平均浓度最高、春秋季次之、夏季最低,冬季浓度是夏季的1.9~2.6倍;年均PM2.5浓度整体趋降,且表现为下游>中游>上游的空间分异性.(2)PM2.5的空间聚集表现为上游“低—低”集聚、下游“高—高”集聚、中游城市的空间聚集特征不显著,空间正相关集聚的城市数量以先增后减的趋势变化,负相关集聚特征的城市较少.(3)PM2.5  相似文献   

9.
近年来城市臭氧(O3)污染问题日益突出,影响O3污染的关键气象因子尚不明确,因此分析典型城市——苏州的O3污染特征,探究O3污染的高影响气象因子,对该区域大气污染防治具有重要意义.基于苏州环境监测中心2015~2020年4~9月逐小时O3浓度数据及同期气象观测资料,应用相关分析和机器学习方法对其开展相关分析研究.结果表明:(1) 6年间O3污染高发季,O3污染超标率均达20%以上,O3污染日数和以O3为首要污染物的污染日数占比均逐年上升,O3污染问题日益凸显;(2) O3浓度存在单峰日变化特点,谷值出现在07:00前后,峰值出现在15:00~16:00;其与气温和太阳辐射能的日内变化趋势较一致,但其浓度峰值出现时刻又滞后于二者. 2017年和2019年O3有典型的“周末效应”,周末较高的太阳辐照度对O3浓...  相似文献   

10.
朱媛媛  王晓斐  汪巍  刀谞  王帅  陈善荣 《环境科学》2022,43(3):1212-1225
分析2021年春节至元宵节前后“2+26”城市PM2.5污染过程特征,对比2016~2021年春节和元宵节前后3 d的PM2.5日均浓度和小时浓度,2019~2021年PM2.5组分特征,讨论2016~2021年春节至元宵节前后气象因素对PM2.5浓度的影响,并分析了影响2021年春节期间北京地区预报结果的关键因素.结果表明,烟花爆竹燃放叠加不利气象条件导致“2+26”城市在2021年春节期间出现了一次中至重度污染过程,在元宵节期间出现了一次轻至中度污染过程. 2021年腊月二十九至正月初一期间,“2+26”城市ρ(PM2.5)平均值为111μg·m-3;小时峰值为156μg·m-3,为2016~2021年最低. 2021年元宵节前后3 d,“2+26”城市ρ(PM2.5)平均值为85μg·m-3,小时峰值为125μg·m-3,重度及以上污染小时数量为2016~2021...  相似文献   

11.
京津冀及周边地区“2+26”城市为京津冀大气污染传输通道城市,也是我国空气污染最严重的区域之一.针对京津冀及周边地区“2+26”城市,利用中国环境监测总站公布的PM2.5、PM10、SO2、NO2、O3和CO数据,对2013—2019年京津冀及周边地区“2+26”城市大气污染特征进行分析,并探讨影响其空气质量变化的因素.研究表明:①2013—2019年京津冀及周边地区“2+26”城市空气质量总体向好,2019年ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(CO)和ρ(NO2)比2013年分别下降了50%、41%、79%、49%和20%,ρ(O3-8 h-90per)(臭氧日最大8 h平均值第90百分位数)比2013年升高了21%.②2013—2019年京津冀及周边地区“2+26”城市重污染天数持续减少,2019年比2013年下降67%,严重污染天数下降尤为明显,降幅达90%.优良天数比例虽然增加,但2016年以后基本稳定在50%左右,没有持续增加的趋势.③ρ(PM10)、ρ(SO2)、ρ(NO2)和ρ(CO)的最大值均出现在1月,ρ(O3-8 h)(臭氧日最大8 h平均值)的最大值出现在6月.ρ(PM2.5)越高,PM2.5/PM10和SO2/NO2越大,表明二次污染源和燃煤源的贡献越大.④就空间分布而言,ρ(PM2.5)和ρ(PM10)高值区主要集中在区域中南部太行山脉山前的平原地区,低值区主要集中在区域北部.⑤地理位置、气象条件、产业结构、能耗消耗以及减排政策是影响2013—2019年京津冀及周边地区“2+26”城市空气质量变化的重要因素.研究显示,随着大气污染防治减排措施实施的力度逐渐加大,政策影响已成为京津冀及周边地区“2+26”城市空气质量持续改善的最重要手段.   相似文献   

12.
利用2015~2018年哈尔滨市臭氧(O3)监测数据,与其他典型城市进行对比,详细分析了哈尔滨市O3的时间和空间分布特征,及其与气象要素的关系。结果表明:哈尔滨市2015~2018年O3污染程度比北上广及长春,沈阳,大连等城市轻;哈尔滨市O3污染具有明显的季节特征,春夏季O3超标率大于秋冬季;月变化趋势呈现倒“U”型,O3高值集中在5~7月;日变化为单峰分布,在13:00~15:00时浓度维持在全天高值; O3浓度表现为“周末效应”,工作日O3浓度略高于周末;空间分布特征表明:哈尔滨市外围郊区O3浓度普遍高于内围市区;在O3污染高发的5~7月,太阳辐射强度在800~1200W/m2、气温越高、风速越大和相对湿度越小,O3超标率越高。  相似文献   

13.
选取中国6大城市群中的11座代表性城市为研究区域,将监测站点划分为城区、郊区和乡村站,进而分析各城市间PM2.5浓度的城乡差异规律.结果表明,同一城市群各城市之间,或同一城市的城区、郊区、乡村站间PM2.5日变化皆较为相似.京津冀和长三角地区的城市城区PM2.5浓度最高,高于郊区7.8%~9.7%,高于乡村11.3%~16.9%,而粤港澳大湾区和内陆城市群(成渝、长江中游、关中平原城市群)的城市郊区PM2.5浓度最高,高于城区2.6%~11.2%,高于乡村16.7%~26.5%.各城市间城乡PM2.5浓度差值的日变化规律不尽相同,可呈单峰(如上海)或双峰(如杭州)变化,极值可出现在白天(如广州),亦可在夜间(如深圳).PM2.5的排放与传输扩散共同对11城市城乡PM2.5浓度分布产生影响.  相似文献   

14.
为识别我国沿海地区的大气污染分布特征,基于2015—2016年我国沿海12个省(自治区、直辖市)的115个地级以上城市ρ(PM2.5)、ρ(PM10)、ρ(NO2)、ρ(O3)、ρ(CO)和ρ(SO2)监测数据,在分析其时空分布特征的基础上,结合主成分分析和AIC(改进赤池信息准则)开展我国沿海地区大气污染聚类分析研究.结果表明:我国沿海地区颗粒物污染严重,其中70%和54%的城市未达到GB 3095—2012《环境空气质量标准》中ρ(PM2.5)和ρ(PM10)二级标准,ρ(PM2.5)在空间上以浙江省金华市为界呈“北高南低”、金华市以北地区“西高东低”的分布特征;环渤海带及长三角地区ρ(O3)处于相对较高水平,山东省中部ρ(SO2)突出,最高值达71.3 μg/m3.根据6种大气污染物监测值,可将115个地级以上城市聚为3类:类Ⅰ包括河北省南部和山东省西部在内的21个城市,空间分布连续且相对集中,受本地源和扩散条件的影响,各项大气污染物质量浓度均处于较高水平;类Ⅱ包括辽宁省、山东省东部和长三角等地区的42个城市,各项大气污染物质量浓度较类Ⅰ有所降低,ρ(PM2.5)降低(比类Ⅰ低34.2%)明显,更多表现为受工业和散煤燃烧影响的SO2污染,和受海运船舶和陆路交通源影响的NO2污染;类Ⅲ包括福建省、广东省和广西壮族自治区沿海一带的52个城市,大气污染物质量浓度相对较低,空气质量较优,受季风和外来源影响的秋季O3污染特征明显.3类城市ρ(O3)平均值相近但季节性变化有所差异,类Ⅰ和类Ⅱ ρ(O3)峰值均出现在6月,类Ⅰ ρ(O3)季节性差异更为显著,类Ⅲ峰值出现在10月,全年变幅相对较小.研究显示,我国沿海地区山东省西部、江苏省北部与京津冀地区南部呈较为相似的污染特征,广西壮族自治区柳州市与周边城市呈不同聚类特征,ρ(PM)和ρ(SO2)相对较高,为大气污染热点.   相似文献   

15.
由于大气是一个复杂介质,低层大气中湍流的存在使物质和能量的交换很剧烈,污染物的扩散传输现象明显.对不同高度不同区域的低层大气做立体观测,获取气态污染物浓度分布最直接的资料很有必要.综合利用地面观测站点、系留气球和飞机平台,于2016年11月25—26日在天津武清高村一次污染天气条件下对NOx和O3进行立体观测,得到了污染物的地面、垂直和低空区域分布特征,并结合气象因子进行分析研究.观测结果表明,地面$\varphi $(NOx)水平较高,日均值为230×10-9,超过了GB 3095—2012《环境空气质量标准》二级标准的限值,反映了高村冬季较高的污染水平,主要受当地交通源排放的影响.$\varphi $(NOx)随高度的上升呈下降趋势,受风速的影响明显,主要积聚在逆温层以下.低空$\varphi $(NOx)市区高于郊区,而处于更远郊区的高村$\varphi $(NOx)与市区相当,也反映了高村本地较高的NOx污染.高村地面$\varphi $(O3)低,日最大8 h平均值为8×10-9,反映了冬季低温辐射弱、光化学反应强度低的特点.随高度增加$\varphi $(O3)呈上升趋势,垂直分布特征主要与温度层结有关.低空$\varphi $(O3)呈郊区高于市区,高村(远郊区)高于近郊区的特征.研究显示,$\varphi $(NOx)的升高导致$\varphi $(O3)下降,这可能与高村冬季的$\varphi $(VOCs)/$\varphi $(NOx)偏低有关,需要结合VOCs观测数据做进一步分析.   相似文献   

16.
基于2014~2017年江苏省13个市的PM2.5浓度和O3_8h_max数据,探讨了其时空分布特征.在此基础上,研究了日益升高的近地层O3浓度与气象因子的关系.结果表明:江苏省2014~2017年PM2.5浓度整体上呈下降的趋势,年均浓度减少率为6.06μg/m3,而O3_8h_max整体上呈上升趋势,年均浓度增长率为3.84μg/m3.总体上,PM2.5浓度呈现冬春高、夏秋低的V型月变化特征,O3_8h_max则基本呈现不规则的M型,在5月份达到峰值后逐渐降低,又在7~9月份保持平缓,而后又逐渐下降.空间上,江苏省PM2.5浓度呈现"内陆高,沿海低"的状态,而O3_8h_max却呈现"沿海高,内陆低"的状态.与气象因子的相关性表明,O3浓度与气温和太阳辐射呈正相关关系,与相对湿度呈负相关关系,太阳辐射对O3浓度的影响最大,其次是温度和相对湿度.当日平均气温在20~30℃、相对湿度在50%~70%、太阳辐射强度高于150w/m2时O3浓度容易出现超标.  相似文献   

17.
王逸豪  张宇  雷宇 《环境科学研究》2023,36(6):1072-1082
O3污染的防治需要在分析O3人群暴露风险特征的基础上,对前体物的减排路径进行优化.长三角地区是我国O3浓度高、暴露风险大、前体物排放集中的地区之一,其减排路径的优化分析对于全国而言具有借鉴意义.本文以GB 3095—2012《环境空气质量标准》中O3浓度二级标准限值(160μg/m3)为目标,基于长三角地区的人群暴露风险探讨了不同减排路径下的O3污染控制效果.首先,运用WRF-CAMx模型,依据不同的NOx和VOCs减排率模拟了121种减排情景作为基础数据集,引入响应曲面模型(RSM)来划分长三角地区不同城市的控制区类型,并结合人口暴露风险指数来评价O3暴露的风险程度,将中高暴露风险地区与控制区耦合,设置HN区(NOx控制区中的O3暴露中高风险城市)和HV区(VOCs控制区中的O3暴露中高风险城市);其次,设置了7条不同的NOx  相似文献   

18.
为了解《打赢蓝天保卫战三年行动计划》期间(2018—2020年)以及之后(2021年)我国重点污染区域空气质量情况,并区分排放源控制与气象条件的贡献,本文利用逐小时监测的PM2.5、O3浓度以及气象要素数据,研究了2018—2021年京津冀及周边地区“2+26”城市PM2.5与O3污染特征,结合KZ (Kolmogorove Zurbenko)滤波方法定量分析了排放源与气象条件对PM2.5与O3浓度长期趋势的贡献. 结果表明:①2018—2021年“2+26”城市PM2.5浓度年均值与O3-8 h-90th浓度(O3日最大8 h平均浓度的第90百分位数)均呈逐年下降趋势. 2018—2021年PM2.5浓度年均值分别为60、57、51和45 μg/m3,河北省南部、河南省与山东省南部PM2.5浓度年均值均较高;O3-8 h-90th浓度分别为198、195、179和171 μg/m3,2018年保定市、石家庄市、聊城市与晋城市的O3-8 h-90th浓度(>210 μg/m3)均较高,而2021年太原市O3-8 h-90th浓度(192 μg/m3)较高. ②PM2.5与O3-8 h浓度(O3日最大8 h平均浓度)的长期分量在大部分城市受气象条件影响较为明显. 受气象条件影响的PM2.5浓度长期分量在2018—2020年无明显趋势,在2021年呈下降趋势;受排放源影响的PM2.5浓度长期分量在2018—2020年呈下降趋势,在2021年无明显趋势. 受气象条件影响的O3-8 h浓度长期分量在2018—2020年呈下降趋势,在2021年呈上升趋势;受排放源影响的O3-8 h浓度长期分量在2018年呈下降趋势,在2019—2021年无明显趋势. ③11个气象因子中,温度和相对湿度对PM2.5与O3-8 h浓度变化的影响较大,当温度与相对湿度均比前一天升高时,更有利于PM2.5与O3-8 h浓度的同时升高. 研究显示,“2+26”城市PM2.5与O3污染受气象条件影响显著,温度与相对湿度的变化对判定PM2.5与O3-8 h浓度同时升高的现象有一定积极意义.   相似文献   

19.
为了评估2018年春节期间(2月15—16日)京津冀及周边地区“2+26”城市烟花禁限放措施的效果,采用浓度特征对比、ρ(PM2.5)/ρ(CO)等方法,对“2+26”城市的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)进行分析,并定量估算了除夕夜烟花燃放对ρ(PM2.5)和ρ(SO2)的贡献率.结果表明:“2+26”城市烟花的集中燃放会导致ρ(PM2.5)、ρ(SO2)显著增长,出现以PM2.5为首要污染物的重污染时段,2018年12月16日03:00区域内14个城市ρ(PM2.5)达到重度及以上污染水平,呈区域性污染特征;与2017年同期(1月27—28日)相比,2018年春节期间(2月15—16日)14个城市烟花燃放对ρ(PM2.5)平均贡献量呈下降趋势,其中,淄博市、济南市、北京市降幅最大,分别下降了85.2%、74.6%和65.2%,表明烟花禁限放措施起到了显著的污染削峰作用;与城区相比,周边郊县ρ(PM2.5)显著高于城区,呈“农村包围城市”的现象,说明城区监测点位受到郊县等周边地区烟花燃放的传输影响.研究显示,虽然城区烟花禁限放措施起到了显著的削峰作用,但城区监测点位空气质量仍受到郊县等周边地区烟花燃放的传输影响,导致大气重污染的发生.   相似文献   

20.
在北京城区和上甸子本底地区分别开展了为期3a和1a的NH3在线观测,并结合风向、风速、温度、相对湿度等气象因素的变化特征,分析了北京地区NH3浓度水平、年季特征及影响因素.结果发现,北京城区和本底地区的NH3年均浓度分别为(32.5±20.8)×10-9V/V和(11.6±10.3)×10-9V/V,北京城区的NH3浓度高于大多数国内外主要城市和地区的NH3浓度水平.城区和本底地区NH3浓度年变化特征为夏季高,分别为(34.1±6.8)×10-9V/V和(11.1±2.2)×10-9V/V,冬季低,分别为(19.7±9.3)×10-9V/V和(2.4±0.6)×10-9V/V.NH3的日变化特征受气象因素影响明显,其结果表明,春季城区NH3浓度峰值出现在15:00,而本底地区受西南风影响在20:00达到峰值;夏季城区NH3浓度最高值在7:00出现,本底地区则呈现双峰值(分别在09:00和22:00);秋季城区和本底地区的日变化规律一致,均在22:00出现峰值;冬季城区的峰值出现时间晚于本底地区,峰值分别出现在23:00和20:00.西南风是造成本底地区NH3浓度升高的主要原因,春季和夏季,随着西南向风速的增大,NH3浓度显著升高.城区的NH3浓度则主要受到局地排放的影响.浓度权重轨迹法的研究结果发现,北京、天津、河北及河南北部地区是影响北京地区大气NH3的主要源区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号