首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
可见光活性纳米TiO2光催化涂料的抗菌性能研究   总被引:1,自引:0,他引:1  
基于过渡金属离子掺杂技术,制备了在室内光辐照条件下具有良好光催化抗菌性能的可见光响应型铁掺杂TiO2光催化涂料。研究结果表明,在可见光活性光催化涂料中添加1%的纳米TiO2时,抗菌效果最好,光照24 h后对大肠杆菌、白色念珠球菌、黑曲霉的杀菌率分别达到99.9%、97.2%、82%。采用致孔剂聚乙二醇6 000对光催化剂改性后,能加快该涂料的抗菌性能,光照6 h后杀菌率就能达到99.9%。表明该涂料在室内可见光照射下具有较好的广谱抗菌效果,能抑制和杀灭多种微生物。  相似文献   

2.
纳米生态建筑涂料光催化降解甲醛的研究   总被引:2,自引:1,他引:2  
以掺加纳米TiO2制备的光催化建筑涂料为催化剂,研究了在紫外光照条件下对气态甲醛的催化降解,并探讨了纳米催化剂晶型、用量和吸附量对光催化降解甲醛的影响。实验结果表明,锐钛型纳米TiO2具有较高的光催化降解甲醛的活性,1h甲醛的降解率可达到70%左右,产物主要为二氧化碳和水;光催化降解甲醛受到涂膜上吸附量的较大影响;该涂料对甲醛的光催化降解反应表现出一级动力学速率规律,且具有良好的线性关系。  相似文献   

3.
先用水热法制备了纳米级NiFe2O2磁核,然后采用均匀沉淀法在NiFe2O2磁核表面包覆TiO2,制备了一种新型磁性纳米光催化剂TiO2/NiFe2O2通过实验确定了制备TiO2/NiFe2O2的最佳Ti/Ni(摩尔比)为30/1,用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外-可见(UV-Vis)漫反射、热重-差示扫描量热分析(TG-DSC)、磁力学测试等手段对其进行了表征.以甲基橙的水溶液为模拟污染物,评价了TiO2/NiFe2O2的光催化性能,在光照2 h后,甲基橙的脱色率可达98.5%.研究结果表明,TiO2/NiFe2O2是一种可重复使用的高效光催化剂.  相似文献   

4.
先用水热法制备了纳米级NiFe2O4磁核,然后采用均匀沉淀法在NiFe2O4磁核表面包覆TiO2,制备了一种新型磁性纳米光催化剂TiO2/NiFe2O4。通过实验确定了制备TiO2/NiFe2O4的最佳Ti/Ni(摩尔比)为30/1,用X射线衍射(XRD)、透射电子显微镜(TEM)、紫外-可见(UV—Vis)漫反射、热重一差示扫描量热分析(TG-DSC)、磁力学测试等手段对其进行了表征。以甲基橙的水溶液为模拟污染物,评价了TiO2/NiFe2O4的光催化性能,在光照2h后,甲基橙的脱色率可达98.5%。研究结果表明,TiO2/NiFe2O4是一种可重复使用的高效光催化剂。  相似文献   

5.
纳米TiO2改性可见光催化降解有机物研究进展   总被引:10,自引:0,他引:10  
光催化降解水中有机污染物是一项颇有发展前途的废水处理技术.目前主要的研究工作由紫外光逐步向可见光催化方向发展,使这项技术向实用性又迈进了一步.系统介绍了纳米TiO2的光催化降解有机污染物的原理,光催化处理水的现状,并从离子掺杂、表面光敏化和分子筛负载几个方面综述了可见光化的研究现状和发展方向.  相似文献   

6.
以高压汞灯为光源 ,采用浸涂 -烧结法制备的负载型纳米TiO2 作为光催化剂 ,通过对水中微量溶解性间二甲苯的光催化氧化过程的研究表明 ,初始浓度在 6 .6 8— 17.36mg/L的范围内 ,间二甲苯的光催化反应遵循表观一级反应动力学规律 ,反应的表观速率常数随溶液初始浓度的增大而减小 ,半衰期则随初始浓度的增大而增加 ,经 1.5h反应后 ,溶液中间二甲苯的去除率从 17.36mg/L的 5 4 .4 4 %增加到 6 .6 8mg/L的 75 .90 %。  相似文献   

7.
纳米TiO2薄膜在不同陶瓷表面的负载及其光催化性能研究   总被引:8,自引:0,他引:8  
利用2种不同表面处理的陶瓷作为载体,用溶胶凝胶法在其表面进行了纳米TiO2光催化薄膜的负载。采用X射线衍射法(XRD)、X射线光电于能谱仪(XPS)和扫描电镜(SEM)对薄膜的粒径、横断面及表面组成进行了表征和分析,结果表明,TiO2的平均粒径约为15nm,釉面陶瓷TiO2薄膜分布均匀,膜厚约为300nm;无釉陶瓷TiO2薄膜分布不均,膜层不明显;2种载体中的一些基质离子在TiO2薄膜有渗透。苯酚的降解实验表明,以2种不同表面处理的陶瓷为载体的TiO2薄膜对苯酚的降解均符合一级反应动力学,就催化活性而言,TiO2/釉面陶瓷〉TiO2/无釉陶瓷,分析认为基质渗透的Ca^2+有降低TiO2光催化活性的作用;该薄膜对实际生产多菌灵废水具有催化降解作用。重复降解实验20次,TiO2/釉面陶瓷和TiO2/无釉陶瓷对苯酚的去除率仅分别降低9%和6%。  相似文献   

8.
以钛酸丁酯为前驱物、无水乙醇作溶剂、二乙醇胺作为抑制剂,采用溶胶-凝胶法制备TiO2溶胶,在NN3气流中直接进行热处理,制备一系列不同焙烧温度的淡黄色的掺氮纳米TiO2粉体。经XRD、UV-Vis和FTIR分析表明,实验制得的TiO2-xNx在350、400、450、500和550℃热处理3 h后仍为锐钛型;450℃保温3 h掺氮样品具有最佳的紫外-可见光响应,其吸收边红移至720 nm左右。罗丹明B的可见光降解实验及产物分析表明,掺氮样品具有良好的可见光催化活性。  相似文献   

9.
掺Ni^2+的TiO2颗粒光催化性能的研究   总被引:1,自引:0,他引:1  
通过溶胶.凝胶法制备掺杂Ni^2+的纳米TiO2,并用XRD和TEM进行了表征,发现Ni^2+的掺杂减小了TiO2颗粒的粒径,Ni2+/TiO2晶型为锐钛型。通过对目标物罗丹明B的光催化降解实验,发现Ni^2+的掺杂提高了TiO2的光催化活性,其降解罗丹明B的反应遵从一级反应动力学方程,Ni^2+惨杂量为1.2%时的光催化活性最高。  相似文献   

10.
利用TiO2的光催化效应脱除大气污染物是近十年来国内外学术界的研究热点之一.本文对TiO2光催化脱除NOx方面的研究工作进行了综述,着重论述了光催化氧化反应及光催化还原反应脱除NOx的反应机理及影响因素,并对应用前景作出展望.  相似文献   

11.
以Bi(NO3)3·5H2O、NH4H2PO4和稀土氧化物为原料,在乙二醇介质中采用溶剂热法制备了不同稀土元素(Ln=Sm、Pr、Tb)掺杂的BiPO4光催化剂(记为BiPO4-Ln,包含BiPO4-Sm、BiPO4-Pr和BiPO4-Tb)。通过X-射线衍射法(XRD)、扫描电子显微镜(SEM)、X-射线光电子能谱(XPS)和紫外可见漫反射光谱(UV-Vis DRS)对制备的催化剂进行了表征。以染料罗丹明B(rhodamine B, RhB)及小分子水杨酸(salicylic acid, SA)为目标化合物,研究了在可见光激发下(λ≥420 nm) BiPO4-Ln对目标污染物的光催化降解特性,结果表明,BiPO4-Ln相较纯BiPO4,其光吸收范围从紫外光扩大到可见光区域,在3种BiPO4-Ln催化剂中,BiPO4-Sm对RhB的吸附能力最强且其光催化活性较强,通过测定其在可见光下降解RhB过程中产生的活性物种,发现BiPO4-Ln在氧化降解RhB的过程中主要涉及到·OH及O-2·的氧化机理。  相似文献   

12.
研究了对位酯生产废水的初步处理方案.先将对位酯废水进行中和、冷冻除盐、加CaO沉淀、过滤等预处理(预处理后COD 40 352 mg/L;SO42- 9 577 mg/L;NH3-N 21 mg/L),再采用纳米光催化降解以及BaCl2进行处理,TiO2浓度为2 g/L时处理效果较好(COD 30 325 mg/L;SO42- 880 mg/L;NH3-N 140 mg/L).废水经铁炭微电解及CaO处理后,再进行光催化降解可以达到更好的处理效果,COD降为21 224 mg/L.废水经微电解、Fenton氧化和光催化联用处理后,COD降为20 800 mg/L.  相似文献   

13.
以PEG为模板剂制备Bi2O2CO3及其可见光光催化性能   总被引:1,自引:0,他引:1  
以聚乙二醇-6000(PEG-6000)为模板剂水热法制备碳酸氧铋(p-Bi2O2CO3)粉末,采用x射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和紫外可见漫反射(DRS)对粉末进行了初步表征。在可见光(λ≥420nm)照射下,以罗丹明B(RbB)和水杨酸(SA)光催化降解实验为探针反应,实验结果表明,p-Bi2O2CO3具有较高的光催化活性,对RhB和SA有较好的降解效果。通过紫外-可见光谱(uV-Vis)、红外光谱(IR)和测定总有机碳(TOC)含量,光催化反应35h后RhB的矿化率为77%,同时对SA的降解率达到43%。同时,采用N,N-二乙基对苯二胺(DPD)分光光度法和对苯二甲酸荧光光度法分别测定了降解过程中H2O2和羟基自由基(·OH)的变化,表明p-Bi2O2CO3/Vis光催化降解机理涉及到·OH历程。  相似文献   

14.

In recent years, using semiconductor photocatalysts for antibiotic contaminant degradation under visible light has become a hot topic. Herein, a novel and ingenious cadmium-doped graphite phase carbon nitride (Cd-g-C3N4) photocatalyst was successfully constructed via the thermal polymerization method. Experimental and characterization results revealed that cadmium (Cd) was well doped at the g-C3N4 surface and exhibited high intercontact with g-C3N4. Additionally, the introduction of cadmium significantly improved the photocatalytic activity, and the optimum degradation efficiency of tetracycline (TC) reached 98.1%, which was exceeded 2.0 times that of g-C3N4 (43.9%). Meanwhile, the Cd-doped sample presented a higher efficiency of electrical conductivity, light absorption property, and photogenerated electron-hole pair migration compared with g-C3N4. Additionally, the quenching experiments and electron spin-resonance tests exhibited that holes (h+), hydroxyl radicals (?OH), superoxide radicals (?O2?) were the main active species involved in TC degradation. The effects of various conditions on photocatalytic degradation, such as pH, initial TC concentrations, and catalyst dosage, were also researched. Finally, the degradation mechanism was elaborated in detail. This work gives a reasonable point to synthesizing high-efficiency and economic metal-doped photocatalysts.

  相似文献   

15.
纳米TiO2改性可见光催化降解有机物研究进展   总被引:1,自引:0,他引:1  
光催化降解水中有机污染物是一项颇有发展前途的废水处理技术.目前主要的研究工作由紫外光逐步向可见光催化方向发展,使这项技术向实用性又迈进了一步.系统介绍了纳米TiO2的光催化降解有机污染物的原理,光催化处理水的现状,并从离子掺杂、表面光敏化和分子筛负载几个方面综述了可见光化的研究现状和发展方向.  相似文献   

16.
可见光/H2 O2/海藻酸铁非均相催化降解吖啶橙的研究   总被引:6,自引:0,他引:6  
由海藻酸钠和氯化铁反应制备了海藻酸铁凝胶小球催化剂,考察了该催化剂的吸附和可见光下催化降解吖啶橙的性能.结果表明催化剂的吸附能力随pH升高而提高,且催化剂用量为40个凝胶小球时,可见光下吖啶橙能够在较宽pH值范围内脱色,脱色速率随H2O2的用量增加而增加,该反应符合Arrhenius规律,其表观活化能为49.6 kJ/mol.自由基清除剂的加入不会降低脱色速率,表明催化反应不是羟基自由基的机理,而与高活性的类{ Fe(Ⅳ)=O}高价铁中间产物有关.  相似文献   

17.
可见光/H2 O2/海藻酸铁非均相催化降解吖啶橙的研究   总被引:3,自引:0,他引:3  
由海藻酸钠和氯化铁反应制备了海藻酸铁凝胶小球催化剂,考察了该催化剂的吸附和可见光下催化降解吖啶橙的性能.结果表明催化剂的吸附能力随pH升高而提高,且催化剂用量为40个凝胶小球时,可见光下吖啶橙能够在较宽pH值范围内脱色,脱色速率随H2O2的用量增加而增加,该反应符合Arrhenius规律,其表观活化能为49.6 kJ/mol.自由基清除剂的加入不会降低脱色速率,表明催化反应不是羟基自由基的机理,而与高活性的类{ Fe(Ⅳ)=O}高价铁中间产物有关.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号