首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The distribution of trace elements in New Jersey streambed sediments is described with respect to physiographic provinces and major drainage areas. Samples were collected during 1976–1993 at 295 sites distributed throughout New Jersey. Copper, chromium, lead, and zinc were detected with the greatest frequency and at the highest concentrations of the elements. Concentrations of most trace elements were significantly higher in streambed sediments from the New England (glaciated) and Piedmont physiographic provinces - the provinces with the lowest and highest percentages of urban land use, respectively - than in sediments from the other provinces. High trace-element concentrations in the New England (glaciated) province reflect previous mining of extensive magnetite deposits, whereas those in the Piedmont province most likely reflect urban land use. Significantly lower trace-element concentrations in streambed sediments from the Coastal Plain are attributable to the low pH of the streamwater, the lack of iron and manganese available to form coatings that scavenge trace elements, and the relatively low percentage of urban land use in the province. Trace-element concentrations were related to land use, population, or point sources in the drainage basin specific to the sampling location by using logistic regression. Results of this analysis indicate a relation between arsenic and agricultural land use; chromium and physiographic province; and copper, lead, and zinc and population density.  相似文献   

2.
ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera‐Plecoptera‐Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold‐water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality.  相似文献   

3.
ABSTRACT: A study of benthic macroinvertebrate community composition was conducted at eight sites along Shabakunk Creek, a small stream in Mercer County, New Jersey, which receives urban runoff. The relationship between changes in substrate composition and the nature of the benthic macroinvertebrate community has been examined. Organisms were collected seasonally from natural substrates in riffles. Attempts to employ artificial substrates for invertebrate collection proved unsuccessful, as the population on the samplers was not representative of that in the stream bed. Number of total benthic macroinvertebrate taxa collected declined from 13 in relatively undeveloped upstream areas to four below heavily developed areas, while population density decreased simultaneously in the same areas. Periphyton samples collected from natural substrates were analyzed for selected heavy metals. Significantly higher heavy metal concentrations are reported from substrates sampled below heavily developed areas, and changes in these values are discussed with regard to changes in benthic macroinvertebrate distribution.  相似文献   

4.
Abstract: The spatial scale and location of land whose development has the strongest influence on aquatic ecosystems must be known to support land use decisions that protect water resources in urbanizing watersheds. We explored impacts of urbanization on streams in the West River watershed, New Haven, Connecticut, to identify the spatial scale of watershed imperviousness that was most strongly related to water chemistry, macroinvertebrates, and physical habitat. A multiparameter water quality index was used to characterize regional urban nonpoint source pollution levels. We identified a critical level of 5% impervious cover, above which stream health declined. Conditions declined with increasing imperviousness and leveled off in a constant state of impairment at 10%. Instream variables were most correlated (0.77 ≤ |r| ≤ 0.92, p < 0.0125) to total impervious area (TIA) in the 100‐m buffer of local contributing areas (~5‐km2 drainage area immediately upstream of each study site). Water and habitat quality had a relatively consistent strong relationship with TIA across each of the spatial scales of investigation, whereas macroinvertebrate metrics produced noticeably weaker relationships at the larger scales. Our findings illustrate the need for multiscale watershed management of aquatic ecosystems in small streams flowing through the spatial hierarchies that comprise watersheds with forest‐urban land use gradients.  相似文献   

5.
In all, 13 stream water-quality parameters, including specific conductance (SC), pH, dissolved oxygen (DO), dissolved organic carbon (DOC), three nutrients, and six major ions were compared between the northern bedrock and southern coastal plain regions of New Jersey, USA and related to watershed-disturbance gradients characterized by the percentage of urban land, impervious surface (IS), agriculture, and altered land (sum of urban land and agriculture) in the watersheds. SC, DO, calcium, magnesium, sodium, and chloride concentrations were greater in the north. DOC was higher and pH was lower in the south. Nutrient, potassium, and sulfate concentrations did not differ between regions. Regional water-quality differences are attributed to geologic setting and land use. Except for DO in southern streams, all water-quality parameters were related to urban land, agriculture, or both. Significant correlations between urban land and IS and water-quality variables were similar in both regions with differences in unitless correlation coefficients ranging from 0.00 to 0.06. Compared to urban land and agriculture, relationships between most water-quality variables and altered land were stronger in the south. The extent of urban and agricultural lands in the watersheds did not differ by region. Altered land was correlated with urban land in both regions and with agriculture only in the south. Although focused on New Jersey, this study has broader implications for watershed planning.  相似文献   

6.
ABSTRACT: Macroinvertebrates were used to assess the impact of urbanization on stream quality across a gradient of watershed imperviousness in 43 southeastern Wisconsin streams. The percentage of watershed connected imperviousness was chosen as the urbanization indicator to examine impact of urban land uses on macroinvertebrate communities. Most urban land uses were negatively correlated with the Shannon diversity index, percent of pollution intolerant Ephemeroptera, Plecoptera, and Trichoptera individuals, and generic richness. Nonurban land uses were positively correlated with these same metrics. The Hilsenhoff biotic index indicated that stream quality declined with increased urbanization. Functional feeding group metrics varied across a gradient of urbanization, suggesting changes in stream quality. Proportions of collectors and gatherers increased, while proportions of filterers, scrapers, and shredders decreased with increased watershed imperviousness. This study demonstrated that urbanization severely degraded stream macroinvertebrate communities, hence stream quality. Good stream quality existed where imperviousness was less than 8 percent, but less favorable assessments were inevitable where imperviousness exceeded 12 to 20 percent. Levels of imperviousness between 8 and 12 percent represented a threshold where minor increases in urbanization were associated with sharp declines in stream quality.  相似文献   

7.
Benthic macroinvertebrate communities in streams adjacent to cornfields, streams where cows had unrestricted access, and reference locations without agriculture were compared to examine the effects of local land use and land use/land cover in the watershed. At each local site, macroinvertebrates and a variety of habitat parameters were measured upstream, adjacent, downstream, and farther downstream of the local land use. A geographic information system (GIS) was used to calculate drainage basin area, land use/land cover percentages in each basin, and the distance from sample sites to the stream source. Three‐way analysis of covariance (ANCOVA) tests with date, site type, and sampling location as main effects were used to explore differences in macroinvertebrate metrics using median substrate size, percent hay/pasture area, and stream depth as covariates. The covariates significantly improved model fit and showed that multiple contributing factors influence community composition. Local impacts were greatest at sites where cows had access, probably because of sedimentation and embeddedness in the substrate. Differences between the upstream and the adjacent and downstream locations were not as great as expected, perhaps because upstream recolonization was reduced by agricultural impacts or because of differences in the intensity or proximity of agriculture to riparian areas in the watershed. The results underscore the importance of both local and watershed factors in controlling stream community composition.  相似文献   

8.
The influence of golf course operation on benthic macroinvertebrate communities in Precambrian Shield streams was evaluated using rapid bioassessment and the reference condition approach. Streams were sampled for water chemistry and invertebrates in 1999 and 2000, six on operational golf courses, and seven in forested reference locations. Correspondence analysis (CA) was used to determine the major patterns in the macroinvertebrate taxa, and canonical correspondence analysis (CCA) was used to evaluate relationships with environmental variables. The reference streams were used to define the normal range of variation for a variety of summary indices to evaluate the golf course streams. In all cases, golf course streams were higher in nutrients and dissolved ions and more alkaline than the forested reference streams. There was considerable variability in the macroinvertebrate fauna from the golf course streams, which was related to differences in golf course land management practices and to the potential influence of highway runoff. Of the management practices evaluated, fertilizer application rates in particular were important, as was the presence of ponds upstream on the course. Invertebrate taxa with higher abundances in golf course streams included Turbellaria, Isopoda, Amphipoda, Zygoptera, and Trombidiformes. Taxa more common in the reference streams included Ephemeroptera, Megaloptera, Culicidae, and Plecoptera. There were marked differences in the overall benthic macroinvertebrate community in three of the six golf course streams studied relative to the forested reference streams, suggesting that golf course land management on the Precambrian Shield can be associated with significant differences in macroinvertebrate community structure.  相似文献   

9.
ABSTRACT: ERTS-1 satellite imagery has been evaluated as a means of providing useful watershed physiography information. From these data physiographic parameters such as drainage basin area and shape, drainage density, stream length and sinuosity, and the percentage of a watershed occupied by major land use types were obtained in three study areas. The study areas were: (1) Southwestern Wisconsin; (2) Eastern Colorado; and (3) portions of the Middle Atlantic States Using ERTS-1 imagery at 1:250,000 and 1:100,000 scales it was found that drainage basin area and shape and stream sinuosity were comparable (within 10%) in all study areas to physiographic measurements derived from conventional topographic maps at the same scales Land use information can be usefully extracted for watersheds as small as 30 mi2(78 km2) in area. Improved drainage network and density information is obtained from ERTS-1 imagery in dissected areas such as Southwestern Wisconsin, but in heavily vegetated areas (Middle Atlantic States) or areas with little physical relief (Eastern Colorado) low order streams are difficult to detect and the derived drainage densities are significantly smaller than those obtained from standard maps. It is concluded that ERTS-1 imagery can be employed to advantage in mean annual runoff prediction techniques and in providing or maintaining land use information used in the calibration and operation of watershed models.  相似文献   

10.
ABSTRACT. An ever increasing number of communities throughout the nation are being forced by Federal legislation and local pressures to adopt land use and control measures related to drainage and flood protection. In many instances communities are hastily adopting ordinances and regulations which later prove difficult to administer and enforce. In addition, many of these ordinances and regulations are not producing the results originally anticipated. This paper discusses the basic elements of a drainage ordinance and evaluates the role of the ordinance in a comprehensive drainage program. This evaluation is based on the results of a two year study of drainage programs in five urban areas which produced a model urban drainage ordinance and recommendations on the administration of the ordinance. Personal interviews and local documents are used as the data base in formulating conclusions and recommendations.  相似文献   

11.
Data collected from 172 sites in 20 major river basins between 1993 and 1995 as part of the US Geological Survey's National Water-Quality Assessment Program were analyzed to assess relations among basinwide land use (agriculture, forest, urban, range), water physicochemistry, riparian condition, and fish community structure. A multimetric approach was used to develop regionally referenced indices of fish community and riparian condition. Across large geographic areas, decreased riparian condition was associated with water-quality constituents indicative of nonpoint source inputs—total nitrogen and suspended sediment and basinwide urban land use. Decreased fish community condition was associated with increases in total dissolved solids and rangeland use and decreases in riparian condition and agricultural land use. Fish community condition was relatively high even in areas where agricultural land use was relatively high (>50% of the basin). Although agricultural land use can have deleterious effects on fish communities, the results of this study suggest that other factors also may be important, including practices that regulate the delivery of nutrients, suspended sediments, and total dissolved solids into streams. Across large geographic scales, measures of water physicochemistry may be better indicators of fish community condition than basinwide land use. Whereas numerous studies have indicated that riparian restorations are successful in specific cases, this analysis suggests the universal importance of riparian zones to the maintenance and restoration of diverse fish communities in streams.  相似文献   

12.
ABSTRACT: Concentrations of 18 hydrophobic chlorinated organic compounds in streambed sediments from 100 sites throughout New Jersey were examined to determine (1) which compounds were detected most frequently, (2) whether detection frequencies differed among selected drainage basins, and (3) whether concentrations differed significantly among selected drainage basins. Twelve drainage basins across New Jersey that contain a range of land-use patterns and population densities were selected to represent various types and degrees of development. To ensure an adequate number of samples for statistical comparison among drainage basins, the 12 selected basins were consolidated into seven drainage areas on the basis of similarities in land-use patterns and population densities. Additionally, data for three classes of chlorinated organic compounds in streambed sediments from 255 sites throughout New Jersey were examined to determine whether the presence of these compounds in streambed sediments is related to the type and degree of development within the drainage area of each sampling site. Chlorinated organic compounds detected most frequently within the seven representative drainage areas were DDT, DDE, DDD, chlordane, dieldrin, and PCBs. DDT, DDE, and DDD, which were the most widely distributed organic compounds, were detected in about 60 to 100 percent of the samples from all drainage areas but one (where the detection rate for these compounds was about 20 to 40 percent). Chiordane and dieldrin were detected in about 80 to 100 percent of samples from highly urbanized and populated drainage areas; detection frequencies for these compounds tended to be smaller in less developed and populated areas. PCBs were detected in about 40 to 85 percent of samples from all drainage areas; detection frequencies were highest in the most heavily developed and populated areas. Analysis of variance on rank-transformed organic compound concentrations normalized to sediment organic carbon content was used to evaluate differences in concentrations among the seven representative drainage areas. Chlordane and PCBs were the chlorinated organic compounds with the most highly elevated concentrations in streambed sediments across the State. Median normalized concentrations of all six of the most frequently detected chlorinated organic compounds were highest in the most heavily urbanized and populated drainage area and lowest in the less populated, predominantly agricultural or forested areas. Concentrations of DDT and DDE, however, did not differ significantly among most of the drainage areas. Concentrations of DDD, chlordane, dieldrin, and PCBs differed significantly among drainage areas. The highest median normalized concentrations were found in samples from the most heavily urbanized and populated areas, and the lowest were in samples from the least developed, most heavily forested area. Logistic regression was used to examine relations between the presence of hydrophobic chlorinated organic compounds in streambed sediments at specified concentrations and variables that characterize the type and degree of development within the drainage areas of 255 sites across New Jersey. The explanatory variables found most useful for predicting the presence of chlorinated organic compounds in streambed sediments include total population and amounts (in square kilometers) of various land-use categories. Logistic regression equations were developed to identify significant relations between population and amounts of specific land-use categories within drainage areas and the probability of detecting chlorinated organic contaminants in streambed sediments. These relations can be used to assist in the identification of geographic regions of primary concern for contamination of bed sediments by chlorinated organic compounds across the State.  相似文献   

13.
ABSTRACT: The processing of waste from confined animal feeding operations (CAFOs) presents a major environmental challenge. Treatment of waste and subsequent land application is a common best management practice (BMP) for these operations in Kentucky, USA, but there are few data assessing the effect of runoff from such operations on aquatic communities. The authors sampled a stream bordering a CAFO with a land application program to determine if runoff from the fertilized fields was adversely affecting stream communities. Water chemistry, periphyton, and macroinvertebrate samples from riffle habitats downstream of the CAFO were compared to samples collected from an upstream site and a control stream in 1999 and 2000. Riffle communities downstream of the fertilized fields had higher chlorophyll a levels than other sites, but there were no significant differences in macroinvertebrate numbers or in biometrics such as taxa richness among the sites. The BMP in place at this site may be effective in reducing this CAFO's impact on the stream; however, similar assessments at other CAFO sites should be done to assess their impacts. Functional measures such as nutrient retention and litter decomposition of streams impacted by CAFOs should also be investigated to ensure that these operations are not adversely affecting stream communities.  相似文献   

14.
ABSTRACT: A growing number of developing communities in New Jersey is planning for an ultimate population that would be supplied by endogenous sources of water. At the state and national level, however, reliance on exogenous sources appears to be in favor. Both viewpoints, of course, recognize that water supply is one of the major critical factors in determining the capacity of a land area to support population. Three planning issues that bear on this endogenous-exogenous source controversy are discussed: 1) deep aquifers which have recharge areas in other political jurisdictions and are therefore regulated by other bodies will not count as an endogenous source, reliance will be placed only on shallow water table aquifers which are recharged by local precipitation; 2) total development of the groundwater resources of a headwaters community could result in severe base flow diminishment, thereby supporting the notion that these communities have a regional responsibility to restrict their growth so as to preserve and protect the water supply for downstream users; and 3) yield decrementing estimates, i.e., how much recharge water is lost to runoff as a consequence of development, are needed in order to assess the magnitude of local water resources.  相似文献   

15.
ABSTRACT: We measured the base‐flow stream chemistry in all the major physiographic provinces of the Chesapeake Bay drainage basin. The spatial variation of stream chemistry was closely related to differences in geology and land cover among the sampled watersheds. Some stream chemistry variables were strongly affected by geological settings in the watersheds while others were more influenced by land cover. The effects of land cover differed among chemical constituents and regions. Concentrations of Ca2+, Mg2+, pH, total alkalinity, and conductivity were mainly functions of carbonate bedrock, especially in the Great Valley. Nitrate‐N and total dissolved N were closely related to cropland and increased as the percentage of cropland increased. The rate of increase varied from region to region with the highest in the Piedmont. Na+ and Cl? were mainly affected by the percentage of developed area in a watershed, especially in the Coastal Plain and Piedmont. We observed no significant effects of region or land cover on species of phosphorus because samples were collected under base flow conditions and only dissolved forms were measured. Dissolved silicate (DSi) was not related to any other water chemistry variables. DSi increased as developed area decreased and cropland increased in the Coastal Plain, but these patterns were reversed in the Piedmont. There was no consistent pattern in the spatial variation of land cover effects on the reduced forms of N, dissolved organic P, dissolved organic matter, and K+.  相似文献   

16.
Abstract: The eastern panhandle region of West Virginia is entirely within the Appalachian Ridge and Valley ecoregion. It is underlain by limestone in the eastern part and by shale and sandstone in the western part. Agricultural and urban development has affected the condition of the streams of this region. We examined samples from 165 stations in the Ridge and Valley, collected from 1998 to 2004. Land use, geological characteristics, physical and chemical parameters, and algal and macroinvertebrate assemblages were used to identify potential stressors that affect streams in the region. Our analyses indicated that both human land uses and ecoregional differences led to elevated nutrient concentrations in streams of the study areas. Multiple regression analyses indicated that both agricultural and urban land use in the watershed were associated with high nutrient concentrations (NO2+3, total nitrogen, and total phosphorus) in streams. These elevated nutrient concentrations have led to increased algal biomass, increased trophic state, and degradation of macroinvertebrate community in the streams. Values of the West Virginia Stream Condition Index, as well as several other benthic macroinvertebrate metrics, decreased with increased nutrient concentrations and conductivity, especially in the limestone region. When regional differences were partitioned out in the analysis, nutrient concentrations became the strongest stressor in the limestone region while conductivity exhibited less of an effect on macroinvertebrate metrics. Meanwhile, periphyton diagnostic metrics also responded to increased nutrient concentrations, suggesting nutrients could be a cause of biological degradation in the Eastern Ridge and Valley region. Multiple approaches and multiple lines of evidence (reference approach and stressor‐response approach) were applied to develop nutrient benchmarks for different geological regions in the study watershed.  相似文献   

17.
Our lack of understanding of relationships between stream biotic communities and surrounding landscape conditions makes it difficult to determine the spatial scale at which management practices are best assessed. We investigated these relationships in the Minnesota River Basin, which is divided into major watersheds and agroecoregions which are based on soil type, geologic parent material, landscape slope steepness, and climatic factors affecting crop productivity. We collected macroinvertebrate and stream habitat data from 68 tributaries among three major watersheds and two agroecoregions. We tested the effectiveness of the two landscape classification systems (i.e., watershed, agroecoregion) in explaining variance in habitat and macroinvertebrate metrics, and analyzed the relative influence on macroinvertebrates of local habitat versus regional characteristics. Macroinvertebrate community composition was most strongly influenced by local habitat; the variance in habitat conditions was best explained at the scale of intersection of major watershed and agroecoregion (i.e., stream habitat conditions were most homogeneous within the physical regions of intersection of these two landscape classification systems). Our results are consistent with findings of other authors that most variation in macroinvertebrate community data from large agricultural catchments is attributable to local physical conditions. Our results are the first to test the hypothesis and demonstrate that the scale of intersection best explains these variances. The results suggest that management practices adjusted for both watershed and ecoregion characteristics, with the goal of improving physical habitat characteristics of local streams, may lead to better basin-wide water quality conditions and stream biological integrity.  相似文献   

18.
Forty‐five flood control reservoirs, authorized in the Watershed Protection and Flood Prevention Act 1954, were installed by United States Department of Agriculture (USDA) between 1969 and 1982 in the Little Washita River Experimental Watershed (LWREW), located in central Oklahoma. Over time, these reservoirs have lost sediment and flood storage capacity due to sedimentation, with rates dependent on upstream land use and climate variability. In this study, sedimentation rates for 12 reservoirs representing three major land use categories within LWREW were measured based on bathymetric surveys that used acoustic profiling system. Physiographic and climate attributes of drainage area of surveyed reservoirs were extracted from publicly available data sources including topographic maps, digital elevation models, USDA Natural Resource Conservation Service soils, and weather station databases. Correlation, principal component analysis, and stepwise regression were utilized to analyze the relationship between normalized reservoir sedimentation rates (ReSRa) and the drainage area characteristics to determine the major variables controlling sedimentation within the LWREW. Percent of drainage area with extreme slopes, saturated hydraulic conductivity, and maximum daily rainfall event recorded in spring explained most of the variability in ReSRa. It was also found that percent reduction in reservoir surface area can be used as a surrogate for estimating ReSRa. The implications of the results are discussed.  相似文献   

19.
Most urban growth in Canada occurs in the urban-rural fringe. The increasing dispersal of the Canadian urban population is due to centrifugal forces pulling urbanites past the suburbs into the surrounding exurban communities. Most Canadian urban centres are located on prime agricultural land. Exurban sprawl devours an inordinate amount of the better agricultural land. The growth around the city of Winnipeg is a case in point. Within Winnipeg's urban field are the rural municipalities of East and West St Paul. The objective of this study is to investigate the impact of urban growth on the agricultural land of these RMs as well as the rate of urban growth in both Municipalities based on database analysis using aerial photographs taken in 1960 and 1989 and Geographic Information System (GIS). East St Paul was found to have a higher rate of urbanization (from 10.14% to 43.75%) between 1960 and 1989 than West St Paul (from 7.36% to 23.57%). The growth prediction using Markov probability chain analysis showed that East St Paul will henceforth experience a reduced rate of increase than West St Paul. The rate of urbanization for both RMs is found to be comparable with areas surrounding other major cities such as Toronto. The largest increases in urban land use categories occurred in and around the existing exurban settlements. It was found that most urbanization take place on the most fertile soil.  相似文献   

20.
Multimetric indices based on fish and benthic macroinvertebrate assemblages are commonly used to assess the biological integrity of aquatic ecosystems. However, their response to specific stressors is rarely known. We quantified the response of a fish-based index (Mid-Atlantic Highlands Index of Biotic Integrity, MAH-IBI) and a benthic invertebrate-based index (West Virginia Stream Condition Index, WV-SCI) to acid mine drainage (AMD)-related stressors in 46 stream sites within the Cheat River watershed, West Virginia. We also identified specific stressor concentrations at which biological impairment was always or never observed. Water chemistry was extremely variable among tributaries of the Cheat River, and the WV-SCI was highly responsive across a range of AMD stressor levels. Furthermore, impairment to macroinvertebrate communities was observed at relatively low stressor concentrations, especially when compared to state water quality standards. In contrast to the WV-SCI, we found that the MAH-IBI was significantly less responsive to local water quality conditions. Low fish diversity was observed in several streams that possessed relatively good water quality. This pattern was especially pronounced in highly degraded subwatersheds, suggesting that regional conditions may have a strong influence on fish assemblages in this system. Our results indicate that biomonitoring programs in mined watersheds should include both benthic invertebrates, which are consistent indicators of local conditions, and fishes, which may be indicators of regional conditions. In addition, remediation programs must address the full suite of chemical constituents in AMD and focus on improving linkages among streams within drainage networks to ensure recovery of invertebrate and fish assemblages. Future research should identify the precise chemical conditions necessary to maintain biological integrity in mined Appalachian watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号