首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
ABSTRACT: The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.  相似文献   

2.
    
ABSTRACT: Climatic variation and the possibility of anthropogenically-caused climatic change have emphasized the need for global hydrological cycle models able to simulate the impacts of climate on the atmosphere, continents and oceans. To date, global atmospheric and oceanic models have been developed but, to the best of the author's knowledge, there are no continental hydrological models. Instead, hydrological models continue to develop at the catchment scale and the land phase component of the global hydrologic cycle is modeled as parameterizations within atmospheric models. The author argues that this is not the best solution; that the present land surface components of atmospheric models do not accurately model land phase hydrology and that, instead, atmospheric and oceanic models should be linked to continental-scale hydrological models to form a true model of the global hydrological cycle.  相似文献   

3.
ABSTRACT: The effects of changes in the landscape and climate over geological time are plain to see in the present hydrological regime. More recent anthropogenic changes may also have effects on our way of life. A prerequisite to predicting such effects is that we understand the interactions between climate, landscape and the hydrological regime. A semi-distributed hydrological model (SLURP) has been developed which can be used to investigate, in a simple way, the links between landscape, climate and hydrology for watersheds of various sizes. As well as using data from the observed climate network, the model has been used with data from atmospheric models to investigate possible changes in hydrology. A critical input to such a model is knowledge of the links between landscape and climate. While direct anthropogenic effects such as changes in forested area may presently be included, the indirect effects of climate on landscape and vice versa are not yet modeled well enough to be explicitly included. The development of models describing climate-landscape relationships such as regeneration, development and breakup, water and carbon fluxes at species, ecosystem and biome level is a necessary step in understanding and predicting the effects of changes in climate on landscape and on water resources. Forest is the predominant land cover in Canada covering 453 Mha and productivity/succession models for major forest types should be included in an integrated climate-landscape-water simulation.  相似文献   

4.
    
ABSTRACT: In 1996, the Illinois State Geological Survey began an investigation of fluctuating water levels in a pond in Cary, Illinois. The cause of the fluctuations appeared to be ground water discharge into a storm sewer recently installed by the Illinois Department of Transportation. However, analysis of climatic data provided an equally likely explanation of the fluctuations. Distinguishing the effect of climatic variations from the effect of the storm sewer was hampered by the lack of antecedent ground water and surface water data. In similar settings, it is recommended that ground water and surface water data be collected prior to initiating any infrastructure improvements.  相似文献   

5.
    
ABSTRACT: Downscaling coarse resolution climate data to scales that are useful for impact assessment studies is receiving increased attention. Basin-scale hydrologic processes and other local climate impacts related to water resources such as reservoir management, crop and forest productivity, and ecosystem response require climate information at scales that are much finer than current and future GCM resolutions. The Regional Climate System Model (RCSM) is a dynamic downscaling system that has been used since 1994 for short-term precipitation and streamflow predictions and seasonal hindcast analysis with good skill. During the 1997–1998 winter, experimental seasonal forecasts were made in collaboration with the NOAA Climate Prediction Center and UCLA with promising results. Preliminary studies of a control and 2°CO2 perturbation for the southwestern U.S. have been performed.  相似文献   

6.
    
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis.  相似文献   

7.
ABSTRACT: One of the biggest challenges in managing cold water streams in the Midwest is understanding how stream temperature is controlled by the complex interactions among meteorologic processes, channel geometry, and ground water inflow. Inflow of cold ground water, shade provided by riparian vegetation, and channel width are the most important factors controlling summer stream temperatures. A simple screening model was used to quantitatively evaluate the importance of these factors and guide management decisions. The model uses an analytical solution to the heat transport equation to predict steady‐state temperature throughout a stream reach. The model matches field data from four streams in southwestern Wisconsin quite well (typically within 1°C) and helps explain the observed warming and cooling trends along each stream reach. The distribution of ground water inflow throughout a stream reach has an important influence on stream temperature, and springs are especially effective at providing thermal refuge for fish. Although simple, this model provides insight into the importance of ground water and the impact different management strategies, such as planting trees to increase shade, may have on summer stream temperature.  相似文献   

8.
ABSTRACT: This paper examines the performance of snowmelt-runoff models in conditions approximating real-time forecast situations. These tests are one part of an intercomparison of models recently conducted by the World Meteorological Organization (WMO). Daily runoff from the Canadian snowmelt basin Illecille. waet (1155 km2, 509–3150 m a.s.l.) was forecast for 1 to 20 days ahead. The performance of models was better than in a previous WMO project, which dealt with runoff simulations from historical data, for the following reasons: (1) conditions for models were more favorable than a real-time forecast situation because measured input data and not meteorological forecast inputs were distributed to the modelers; (2) the selected test basin was relatively easy to handle and familiar from the previous WMO project; and (3) all kinds of updating were allowed so that some models even improved their accuracy towards longer forecast times. Based on this experience, a more realistic follow-up project can be imagined which would include temperature forecasts and quantitative precipitation forecasts instead of measured data.  相似文献   

9.
    
Observed streamflow and climate data are used to test the hypothesis that climate change is already affecting Rio Grande streamflow volume derived from snowmelt runoff in ways consistent with model‐based projections of 21st‐Century streamflow. Annual and monthly changes in streamflow volume and surface climate variables on the Upper Rio Grande, near its headwaters in southern Colorado, are assessed for water years 1958–2015. Results indicate winter and spring season temperatures in the basin have increased significantly, April 1 snow water equivalent (SWE) has decreased by approximately 25%, and streamflow has declined slightly in the April–July snowmelt runoff season. Small increases in precipitation have reduced the impact of declining snowpack on trends in streamflow. Changes in the snowpack–runoff relationship are noticeable in hydrographs of mean monthly streamflow, but are most apparent in the changing ratios of precipitation (rain + snow, and SWE) to streamflow and in the declining fraction of runoff attributable to snowpack or winter precipitation. The observed changes provide observational confirmation for model projections of decreasing runoff attributable to snowpack, and demonstrate the decreasing utility of snowpack for predicting subsequent streamflow on a seasonal basis in the Upper Rio Grande Basin.  相似文献   

10.
    
A method is developed for choosing 21st Century streamflow projections among widely varying results from a large ensemble of climate model-driven simulations. We quantify observed trends in climate–streamflow relationships in the Rio Grande headwaters, which has experienced warming temperature and declining snowpack since the mid-20th Century. Prominent trends in the snowmelt runoff season are used to assess corresponding statistics in downscaled global climate model projections. We define “Observationally Consistent (OC)” simulations as those that reproduce historical changes to linear statistics of diminished snowpack–streamflow coupling in the headwaters and an associated increase in the contribution of spring season (post-peak snowpack) precipitation to streamflow. Only a modest fraction of the ensemble of simulations meets these consistency metrics. The subset of OC simulations projects significant decreases in headwaters flow, whereas the simulations that poorly replicate historical trends exhibit a much wider range of projected changes. These results bolster confidence in model-based projections of declining runoff in the Rio Grande headwaters in the snowmelt runoff season and offer an example of a methodology for evaluating model-based projections in basins with similar hydroclimates that have experienced pronounced climate changes in the recent historical record.  相似文献   

11.
    
ABSTRACT: The Great Plains of the United States, drained primanly by the Missouri River, are very sensitive to shifts in climate. The six main stem dams on the Missouri River control more than one‐half of the nearly 1.5 million square kilometer basin and can store three times the annual inflow from upstream. The dams are operated by the U.S. Army Corps of Engineers using a Master Manual that describes system priorities and benefits. The complex operational rules were incorporated into the Soil and Water Assessment Tool computer model (SWAT). SWAT is a distributed parameter rainfall‐runoff model capable of simulating the transpiration suppression effects of CO2 enrichment. The new reservoir algorithms were calibrated using a 25‐year long historic record of basin climate and discharge records. Results demonstrate that it is possible to incorporate the operation of a highly regulated river system into a complex rainfall‐runoff model. The algorithms were then tested using extreme climate scenarios indicative of a prolonged drought, a short drought, and a ten percent increase in basin‐wide precipitation. It is apparent that the rules for operating the reservoirs will likely require modification if, for example, upper‐basin precipitation were to increase only ten percent under changed climate conditions.  相似文献   

12.
Abstract: Sierra Nevada snowmelt and runoff is a key source of water for many of California’s 38 million residents and nearly the entire population of western Nevada. The purpose of this study was to assess the impacts of expected 21st Century climatic changes in the Sierra Nevada at the subwatershed scale, for all hydrologic flow components, and for a suite of 16 General Circulation Models (GCMs) with two emission scenarios. The Soil and Water Assessment Tool (SWAT) was calibrated and validated at 35 unimpaired streamflow sites. Results show that temperatures are projected to increase throughout the Sierra Nevada, whereas precipitation projections vary between GCMs. These climatic changes drive a decrease in average annual streamflow and an advance of snowmelt and runoff by several weeks. The largest streamflow reductions were found in the mid‐range elevations due to less snow accumulation, whereas the higher elevation watersheds were more resilient due to colder temperatures. Simulation results showed that decreases in snowmelt affects not only streamflow, but evapotranspiration, surface, and subsurface flows, such that less water is available in spring and summer, thus potentially affecting aquatic and terrestrial ecosystems. Declining spring and summer flows did not equally affect all subwatersheds in the region, and the subwatershed perspective allowed for identification for the most sensitive basins throughout the Sierra Nevada.  相似文献   

13.
    
ABSTRACT: The climate of Southern Arizona is dominated by summer precipitation, which accounts for over 60 percent of the annual total. Summer and non‐summer precipitation data from the USDA‐ARS Walnut Gulch Experimental Watershed are analyzed to identify trends in precipitation characteristics from 1956 to 1996. During this period, annual precipitation increased. The annual precipitation increase can be attributed to an increase in precipitation during non‐summer months, and is paralleled by an increase in the proportion of annual precipitation contributed during non‐summer months. This finding is consistent with previously reported increases in non‐summer precipitation in the southwestern United States. Detailed event data were analyzed to provide insight into the characteristics of precipitation events during this time period. Precipitation event data were characterized based on the number of events, event precipitation amount, 30‐minute event intensity, and event duration. The trend in non‐summer precipitation appears to be a result of increased event frequency since the number of events increased during nonsummer months, although the average amount per event, average event intensity, and average event duration did not. During the summer “monsoon” season, the frequency of recorded precipitation events increased but the average precipitation amount per event decreased. Knowledge of precipitation trends and the characteristics of events that make up a precipitation time series is a critical first step in understanding and managing water resources in semiarid ecosystems.  相似文献   

14.
ABSTRACT: Evidence is presented that snowmelt runoff from an urban watershed can produce density current intrusions (underflows) in a lake. Several episodes of density current intrusions are documented. Water temperatures and salinities measured near the bottom of a 10 m deep Minneapolis lake during the late winter warming periods in 1989, 1990, 1991, and 1995 show significant rapid changes which are correlated with observed higher air temperatures and snowmelt runoff. The snowmelt runoff entering this particular lake (Ryan Lake) has increased electrical conductivity, salinity, and density. The source of the salinity is the salt spread on urban streets in the winter. Heating of littoral waters in spring may also contribute to the occurrence of the sinking flows, but is clearly not the only cause.  相似文献   

15.
    
ABSTRACT: Air temperatures are sometimes used as easy substitutes for stream temperatures. To examine the errors associated with this substitution, linear relationships between 39 Minnesota stream water temperature records and associated air temperature records were analyzed. From the lumped data set (38,082 daily data pairs), equations were derived for daily, weekly, monthly, and annual mean temperatures. Standard deviations between all measured and predicted water temperatures were 3.5°C (daily), 2.6°C (weekly), 1.9°C (monthly), and 1.3°C (annual). Separate analyses for each stream gaging station gave substantially lower standard deviations. Weather monitoring stations were, on average, 37.5 km from the stream. The measured water temperatures follow the annual air temperature cycle closely. No time lags were taken into account, and periods of ice cover were excluded from the analysis. If atmospheric CO2 doubles in the future, air temperatures in Minnesota are projected (CCC GCM) to rise by 4.3°C in the warm season (April-October). This would translate into an average 4.1°C stream temperature rise, provided that stream shading would remain unaltered.  相似文献   

16.
    
ABSTRACT: Both catchment experiments and a review of hydrologic processes suggest a varying effect of forest harvest on the magnitude of peak flows according to the cause of those peak flows. In northwestern Montana and Northeastern Idaho, annual maximum flows can result from spring snowmelt, rain, mid-winter rain-on-snow, or rain-on-spring-snowmelt. Meteorologic and physical data were used to determine the cause of annual maximum flows in six basins which had the necessary data and were smaller than 150 mi2. Rain-on-spring-snowmelt was the most frequent cause of annual maximum flows in all six basins, although there was a strong gradient in the magnitude and cause of peak flows from southwest to northeast. Less frequent mid-winter rain-on-snow events caused the largest flows on record in four basins. Mid-winter rain-on-snow should be distinguished from rain-on-spring-snowmelt because of differences in seasonal timing, the relative contributions of rain vs. snowmelt, and the projected effects of forest harvest. The effects of mixed flood populations on the flood-frequency curve varied from basin to basin. Annual maximum daily flows could not be reliably predicted from rainfall and snowmelt data.  相似文献   

17.
    
ABSTRACT: Two general circulation models (GCMs) used in the U.S. national assessment of the potential consequences of climate variability and change (CGCM1 and HadCM2) show a large increase in precipitation in the future over the southwestern U.S., particularly during winter. This precipitation increase is an extension of a larger region of increased precipitation in the Pacific Ocean off the west coast of North America that is associated with a deepened and southward-shifted Aleutian Low, a weaker subtropical high, and warmer sea surface temperatures (SSTs). The models differ in their simulation of precipitation anomalies over the southeastern U.S., with CGCM1 showing drier conditions and HadCM2 showing wetter conditions in the future. While both models show decreased frequency of Atlantic storms, consistent with decreased meridional and land/sea temperature gradients, the more coastal position of the storm track in CGCM1 results in less precipitation than modern along the eastern seaboard of the U.S. During summer, differences in land surface models within the two GCMs sometimes lead to differences in soil moisture that feed back to the precipitation over land due to available moisture.  相似文献   

18.
    
ABSTRACT: Recent work has found that a one-parameter Weibull model of wet day precipitation amount based on the Weibull distribution provides a better fit to historical daily precipitation data for eastern U.S. sites than other one-parameter models. The general two-parameter Weibull distribution was compared in this study to other widely used distributions for describing the distribution of daily precipitation event sizes at 99 sites from the U.S. Pacific Northwest. Surprisingly little performance was sacrificed by reducing the two-parameter Weibull to a single-parameter distribution. Advantages of the single-parameter model included requiring only the mean wet day precipitation amount for calibration, invertibility for simulation purposes, and ease of analytical manipulation. The fit of the single-parameter Weibull to the 99 stations included in this study was significantly better than other single-parameter models tested, and performed as well as the widely endorsed, more cumbersome, two-parameter gamma model. Both the one-and two-parameter Weibull distributions are shown to have b-moments that are consistent with historical precipitation data, while the ratio of b-skew and b-variance in the gamma model is inconsistent with the historical recerd by this measure. In addition, it was found that the two-parameter gamma distribution was better fit using the method of moments estimators than maximum likelihood estimates. These findings suggested that the distribution in precipitation among sites in the Pacific Northwest with dramatically different settings are nearly identical if expressed in proportion to the mean site event size.  相似文献   

19.
Galloway, Gerald E., 2011. If Stationarity Is Dead, What Do We Do Now? Journal of the American Water Resources Association (JAWRA) 47(3):563‐570. DOI: 10.1111/j.1752‐1688.2011.00550.x Abstract: In January 2010, hydrologists, climatologists, engineers, and scientists met in Boulder, Colorado, to discuss the report of the death of hydrologic stationarity and the implications this might have on water resources planning and operations in the United States and abroad. For decades planners have relied on design guidance from the Interagency Advisory Committee on Water Data Bulletin 17B that was based upon the concept of stationarity. After 2½ days of discussion it became clear that the assembled community had yet to reach an agreement on whether or not to replace the assumption of stationarity with an assumption of nonstationarity or something else. Hydrologists were skeptical that data gathered to this point in the 21st Century point to any significant change in river parameters. Climatologists, on the other hand, point to climate change and the predicted shift away from current conditions to a more turbulent flood and drought filled future. Both groups are challenged to provide immediate guidance to those individuals in and outside the water community who today must commit funds and efforts on projects that will require the best estimates of future conditions. The workshop surfaced many approaches to dealing with these challenges. While there is good reason to support additional study of the death of stationarity, its implications, and new approaches, there is also a great need to provide those in the field the information they require now to plan, design, and operate today’s projects.  相似文献   

20.
ABSTRACT: Effective planning for use of water resources requires accurate information on hydrologic variability induced by climatic fluctuations. Tree-ring analysis is one method of extending our knowledge of hydrologic variability beyond the relatively short period covered by gaged streamflow records. In this paper, a network of recently developed tree-ring chronologies is used to reconstruct annual river discharge in the upper Gila River drainage in southeastern Arizona and southwestern Arizona since A.D. 1663. The need for data on hydrologic variability for this semi-arid basin is accentuated because water supply is inadequate to meet current demand. A reconstruction based on multiple linear regression (R2=0.66) indicates that 20th century is unusual for clustering of high-discharge years (early 1900s), severity of multiyear drought (1950s), and amplification of low-frequency discharge variations. Periods of low discharge recur at irregular intervals averaging about 20 years. Comparison with other tree-ring reconstructions shows that these low-flow periods are synchronous from the Gila Basin to the southern part of the Upper Colorado River Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号