首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
ABSTRACT: The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.  相似文献   

2.
ABSTRACT: April 1 snowpack accumulations measured at 311 snow courses in the western United States (U.S.) are grouped using a correlation-based cluster analysis. A conceptual snow accumulation and melt model and monthly temperature and precipitation for each cluster are used to estimate cluster-average April 1 snowpack. The conceptual snow model is subsequently used to estimate future snowpack by using changes in monthly temperature and precipitation simulated by the Canadian Centre for Climate Modeling and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HADLEY) general circulation models (GCMs). Results for the CCC model indicate that although winter precipitation is estimated to increase in the future, increases in temperatures will result in large decreases in April 1 snowpack for the entire western U.S. Results for the HADLEY model also indicate large decreases in April 1 snowpack for most of the western US, but the decreases are not as severe as those estimated using the CCC simulations. Although snowpack conditions are estimated to decrease for most areas of the western US, both GCMs estimate a general increase in winter precipitation toward the latter half of the next century. Thus, water quantity may be increased in the western US; however, the timing of runoff will be altered because precipitation will more frequently occur as rain rather than as snow.  相似文献   

3.
ABSTRACT: Simulated daily precipitation, temperature, and runoff time series were compared in three mountainous basins in the United States: (1) the Animas River basin in Colorado, (2) the East Fork of the Carson River basin in Nevada and California, and (3) the Cle Elum River basin in Washington State. Two methods of climate scenario generation were compared: delta change and statistical downscaling. The delta change method uses differences between simulated current and future climate conditions from the Hadley Centre for Climate Prediction and Research (HadCM2) General Circulation Model (GCM) added to observed time series of climate variables. A statistical downscaling (SDS) model was developed for each basin using station data and output from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEPINCAR) reanalysis regridded to the scale of HadCM2. The SDS model was then used to simulate local climate variables using HadCM2 output for current and future conditions. Surface climate variables from each scenario were used in a precipitation‐runoff model. Results from this study show that, in the basins tested, a precipitation‐runoff model can simulate realistic runoff series for current conditions using statistically down‐scaled NCEP output. But, use of downscaled HadCM2 output for current or future climate assessments are questionable because the GCM does not produce accurate estimates of the surface variables needed for runoff in these regions. Given the uncertainties in the GCMs ability to simulate current conditions based on either the delta change or downscaling approaches, future climate assessments based on either of these approaches must be treated with caution.  相似文献   

4.
ABSTRACT: Large deviations in average annual air temperatures and total annual precipitation were observed across the southern United States during the last 50 years, and these fluctuations could become even larger during the next century. We used PnET-IIS, a monthly time-step forest process model that uses soil, vegetation, and climate inputs to assess the influence of changing climate on southern U.S. pine forest water use. After model predictions of historic drainage were validated, the potential influences of climate change on loblolly pine forest water use was assessed across the region using historic (1951 to 1984) monthly precipitation and air temperature which were modified by two general circulation models (GCMs). The GCMs predicted a 3.2°C to 7.2°C increase in average monthly air temperature, a -24 percent to + 31 percent change in monthly precipitation and a -1 percent to + 3 percent change in annual precipitation. As a comparison to the GCMs, a minimum climate change scenario using a constant 2°C increase in monthly air temperature and a 20 percent increase in monthly precipitation was run in conjunction with historic climate data. Predicted changes in forest water drainage were highly dependent on the GCM used. PnET-IIS predicted that along the northern range of loblolly pine, water yield would decrease with increasing leaf area, total evapotranspiration and soil water stress. However, across most of the southern U.S., PnET-IIS predicted decreased leaf area, total evapotranspiration, and soil water stress with an associated increase in water yield. Depending on the GCM and geographic location, predicted leaf area decreased to a point which would no longer sustain loblolly pine forests, and thus indicated a decrease in the southern most range of the species within the region. These results should be evaluated in relation to other changing environmental factors (i.e., CO2 and O3) which are not present in the current model.  相似文献   

5.
ABSTRACT: Previous reports based on climate change scenarios have suggested that California will be subjected to increased wintertime and decreased summertime streamflow. Due to the uncertainty of projections in future climate, a new range of potential climatological future temperature shifts and precipitation ratios is applied to the Sacramento Soil Moisture Accounting Model and Anderson Snow Model in order to determine hydrologic sensitivities. Two general circulation models (GCMs) were used in this analysis: one that is warm and wet (HadCM2 run 1) and one that is cool and dry (PCM run B06.06), relative to the GCM projections for California that were part of the Third Assessment Report of the Intergovernmental Panel on Climate Change. A set of specified incremental temperature shifts from 1.5°C to 5.0°C and precipitation ratios from 0.70 to 1.30 were also used as input to the snow and soil moisture accounting models, providing for additional scenarios (e.g., warm/dry, cool/wet). Hydrologic calculations were performed for a set of California river basins that extend from the coastal mountains and Sierra Nevada northern region to the southern Sierra Nevada region; these were applied to a water allocation analysis in a companion paper. Results indicate that for all snow‐producing cases, a larger proportion of the streamflow volume will occur earlier in the year. The amount and timing is dependent on the characteristics of each basin, particularly the elevation. Increased temperatures lead to a higher freezing line, therefore less snow accumulation and increased melting below the freezing height. The hydrologic response varies for each scenario, and the resulting solution set provides bounds to the range of possible change in streamflow, snowmelt, snow water equivalent, and the change in the magnitude of annual high flows. An important result that appears for all snowmelt driven runoff basins, is that late winter snow accumulation decreases by 50 percent toward the end of this century.  相似文献   

6.
Under the Canadian Species at Risk Act (SARA), Garry oak (Quercus garryana) ecosystems are listed as “at-risk” and act as an umbrella for over one hundred species that are endangered to some degree. Understanding Garry oak responses to future climate scenarios at scales relevant to protected area managers is essential to effectively manage existing protected area networks and to guide the selection of temporally connected migration corridors, additional protected areas, and to maintain Garry oak populations over the next century. We present Garry oak distribution scenarios using two random forest models calibrated with down-scaled bioclimatic data for British Columbia, Washington, and Oregon based on 1961–1990 climate normals. The suitability models are calibrated using either both precipitation and temperature variables or using only temperature variables. We compare suitability predictions from four General Circulation Models (GCMs) and present CGCM2 model results under two emissions scenarios. For each GCM and emissions scenario we apply the two Garry oak suitability models and use the suitability models to determine the extent and temporal connectivity of climatically suitable Garry oak habitat within protected areas from 2010 to 2099. The suitability models indicate that while 164 km2 of the total protected area network in the region (47,990 km2) contains recorded Garry oak presence, 1635 and 1680 km2 of climatically suitable Garry oak habitat is currently under some form of protection. Of this suitable protected area, only between 6.6 and 7.3% will be “temporally connected” between 2010 and 2099 based on the CGCM2 model. These results highlight the need for public and private protected area organizations to work cooperatively in the development of corridors to maintain temporal connectivity in climatically suitable areas for the future of Garry oak ecosystems.  相似文献   

7.
ABSTRACT: The Thornthwaite moisture index is a useful indicator of the supply of water (precipitation) in an area relative to the demand for water under prevailing climatic conditions (potential evapotranspiration). This study examines the effects of changes in climate (temperature and precipitation) on the Thornthwaite moisture index in the conterminous United States. Estimates of changes in mean annual temperature and precipitation for doubled-atmospheric CO2 conditions derived from three general circulation models (GCMs) are used to study the response of the moisture index under steady-state doubled-CO2 conditions. Results indicate that temperature and precipitation changes under doubled-CO2 conditions generally will cause the Thornthwaite moisture index to decrease, implying a drier climate for most of the United States. The pattern of expected decrease is consistent among the three GCMs, although the amount of decrease depends on which GCM climatic-change scenario is used. Results also suggest that changes in the moisture index are related mainly to changes in the mean annual potential evapotranspiration as a result of changes in the mean annual temperature, rather than to changes in the mean annual precipitation.  相似文献   

8.
ABSTRACT: We apply a physically based lake model to assess the response of North American lakes to future climate conditions as portrayed by the transient trace-gas simulations conducted with the Max Planck Institute (ECHAM4) and the Canadian Climate Center (CGCM1) atmosphere-ocean general circulation models (A/OGCMs). To quantify spatial patterns of lake responses (temperature, mixing, ice cover, evaporation) we ran the lake model for theoretical lakes of specified area, depth, and transparency over a uniformly spaced (50 km) grid. The simulations were conducted for two 10-year periods that represent present climatic conditions and those around the time of CO2 doubling. Although the climate model output produces simulated lake responses that differ in specific regional details, there is broad agreement with regard to the direction and area of change. In particular, lake temperatures are generally warmer in the future as a result of warmer climatic conditions and a substantial loss (> 100 days/yr) of winter ice cover. Simulated summer lake temperatures are higher than 30°C over the Midwest and south, suggesting the potential for future disturbance of existing aquatic ecosystems. Overall increases in lake evaporation combine with disparate changes in A/OGCM precipitation to produce future changes in net moisture (precipitation minus evaporation) that are of less fidelity than those of lake temperature.  相似文献   

9.
ABSTRACT: A climate change impacts assessment for water resources in the San Joaquin River region of California is presented. Regional climate projections are based on a 1 percent per year CO2 increase relative to late 20th Century CO2 conditions. Two global projections of this CO2 increase scenario are considered (HadCM2 and PCM) during two future periods (2010 to 2039 and 2050 to 2079). HadCM2 projects faster warming than PCM. HadCM2 and PCM project wetter and drier conditions, respectively, relative to present climate. In the HadCM2 case, there would be increased reservoir inflows, increased storage limited by existing capacity, and increased releases for deliveries and river flows. In the PCM case, there would be decreased reservoir inflows, decreased storage and releases, and decreased deliveries. Impacts under either projection case cannot be regarded as more likely than the other. Most of the impacts uncertainty is attributable to the divergence in the precipitation projections. The range of assessed impacts is too broad to guide selection of mitigation projects. Regional planning agencies can respond by developing contingency strategies for these cases and applying the methodology herein to evaluate a broader set of CO2 scenarios, land use projections, and operational assumptions. Improved agency access to climate projection information is necessary to support this effort.  相似文献   

10.
Anticipated future increases in air temperature and regionally variable changes in precipitation will have direct and cascading effects on United States (U.S.) water quality. In this paper, and a companion paper by Coffey et al., we review technical literature addressing the responses of different water quality attributes to historical and potential future changes in air temperature and precipitation. The goal is to document how different attributes of water quality are sensitive to these drivers, to characterize future risk to inform management responses, and to identify research needs to fill gaps in our understanding. Here we focus on potential changes in streamflow, water temperature, and salt water intrusion (SWI). Projected changes in the volume and timing of streamflow vary regionally, with general increases in northern and eastern regions of the U.S., and decreases in the southern Plains, interior Southwest, and parts of the Southeast. Water temperatures have increased throughout the U.S. and are expected to continue to increase in the future, with the greatest changes in locations where high summer air temperatures occur together with low streamflow volumes. In coastal areas, especially the mid‐Atlantic and Gulf coasts, SWI to rivers and aquifers could be exacerbated by sea level rise, storm surges, and altered freshwater runoff. Management responses for reducing risks to water quality should consider strategies and practices robust to a range of potential future conditions.  相似文献   

11.
Changing climate and land cover are expected to impact flood hydrology in the Delaware River Basin over the 21st Century. HEC‐HMS models (U.S. Army Corps of Engineers Hydrologic Engineering Center‐Hydrologic Modeling System) were developed for five case study watersheds selected to represent a range of scale, soil types, climate, and land cover. Model results indicate that climate change alone could affect peak flood discharges by ?6% to +58% a wide range that reflects regional variation in projected rainfall and snowmelt and local watershed conditions. Land cover changes could increase peak flood discharges up to 10% in four of the five watersheds. In those watersheds, the combination of climate and land cover change increase modeled peak flood discharges by up to 66% and runoff volumes by up to 44%. Precipitation projections are a key source of uncertainty, but there is a high likelihood of greater precipitation falling on a more urbanized landscape that produces larger floods. The influence of climate and land cover changes on flood hydrology for the modeled watersheds varies according to future time period, climate scenario, watershed land cover and soil conditions, and flood frequency. The impacts of climate change alone are typically greater than land cover change but there is substantial geographic variation, with urbanization the greater influence on some small, developing watersheds.  相似文献   

12.
This study investigates the potential impacts of climate change on future flows in the main stem of the Connecticut and Merrimack rivers within Massachusetts. The study applies two common climate projections based on (Representative Concentration Pathways), RCP 4.5 and RCP 8.5 and downscaled gridded climate projections from 14 global climate models (GCMs) to estimate the 100‐year, 24‐h extreme precipitation events for two future time‐periods: near‐term (2021–2060) and far‐term (2060–2099). 100‐year 24‐h precipitation events at near‐ and far‐term are compared to GCM‐driven historical extreme precipitation events during a base period (1960–1999) and results for RCP 8.5 scenario show average increases between 25%–50% during the near‐term compared to the base period and increases of over 50% during the far‐term. Streamflow conditions are generated with a distributed hydrological model where downscaled climate projections are used as inputs. For the near‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest 2.9%–8.1% increases in the 100‐year, 24‐h flow event in the Connecticut and an increase of 9.9%–13.7% in the Merrimack River. For the far‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest a 9.0%–14.1% increase in the Connecticut and 15.8%–20.6% for the Merrimack River. Ultimately, the results presented here can be used as a guidance for the long‐term management of infrastructures on the Connecticut and Merrimack River floodplains.  相似文献   

13.
ABSTRACT: A monthly water‐balance (WB) model was tested in 44 river basins from diverse physiographic and climatic regions across the conterminous United States (U.S.). The WB model includes the concepts of climatic water supply and climatic water demand, seasonality in climatic water supply and demand, and soil‐moisture storage. Exhaustive search techniques were employed to determine the optimal set of precipitation and temperature stations, and the optimal set of WB model parameters to use for each basin. It was found that the WB model worked best for basins with: (1) a mean elevation less than 450 meters or greater than 2000 meters, and/or (2) monthly runoff that is greater than 5 millimeters (mm) more than 80 percent of the time. In a separate analysis, a multiple linear regression (MLR) was computed using the adjusted R‐square values obtained by comparing measured and estimated monthly runoff of the original 44 river basins as the dependent variable, and combinations of various independent variables [streamflow gauge latitude, longitude, and elevation; basin area, the long‐term mean and standard deviation of annual precipitation; temperature and runoff; and low‐flow statistics (i.e., the percentage of months with monthly runoff that is less than 5 mm)]. Results from the MLR study showed that the reliability of a WB model for application in a specific region can be estimated from mean basin elevation and the percentage of months with gauged runoff less than 5 mm. The MLR equations were subsequently used to estimate adjusted R‐square values for 1,646 gauging stations across the conterminous U.S. Results of this study indicate that WB models can be used reliably to estimate monthly runoff in the eastern U.S., mountainous areas of the western U.S., and the Pacific Northwest. Applications of monthly WB models in the central U.S. can lead to uncertain estimates of runoff.  相似文献   

14.
Miller, W. Paul and Thomas C. Piechota, 2011. Trends in Western U.S. Snowpack and Related Upper Colorado River Basin Streamflow. Journal of the American Water Resources Association (JAWRA) 47(6):1197–1210. DOI: 10.1111/j.1752‐1688.2011.00565.x Abstract: Water resource managers in the Western United States (U.S.) are currently faced with the challenge of adapting to unprecedented drought and uncertain impacts of climate change. Recent research has indicated increasing regional temperature and changes to precipitation and streamflow characteristics throughout the Western U.S. As such, there is increased uncertainty in hydroclimatological forecasts, which impact reservoir operations and water availability throughout the Western U.S., particularly in the Colorado River Basin. Previous research by the authors hypothesized a change in the character of precipitation (i.e., the frequency and amount of rainfall and snowfall events) throughout the Colorado River Basin. In the current study, 398 snowpack telemetry stations were investigated for trends in cumulative precipitation, snow water equivalent, and precipitation events. Observations of snow water equivalent characteristics were compared to observations in streamflow characteristics. Results indicate that the timing of the last day of the snow season corresponds well to the volume of runoff observed over the traditional peak flow season (April through July); conversely, the timing of the first day of the snow season does not correspond well to the volume of runoff observed over the peak flow season. This is significant to water resource managers and river forecasters, as snowpack characteristics may be indicative of a productive or unproductive runoff season.  相似文献   

15.
Sanford, Ward E. and David L. Selnick, 2012. Estimation of Evapotranspiration Across the Conterminous United States Using a Regression with Climate and Land‐Cover Data. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12010 Abstract: Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water‐balance method was combined with a climate and land‐cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971‐2000 across the U.S. to obtain long‐term estimates of actual ET. A regression equation was developed that related the ratio ET/P to climate and land‐cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land‐cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land‐cover data can also improve those predictions. Using the climate and land‐cover data at an 800‐m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET/P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land‐cover data are plentiful.  相似文献   

16.
Large area soil moisture estimations are required to describe input to cloud prediction models, rainfall distribution models, and global crop yield models. Satellite mounted microwave sensor systems that as yet can only detect moisture at the surface have been suggested as a means of acquiring large area estimates. Relations previously discovered between microwave emission at the 1.55 cm wavelength and surface moisture as represented by an antecedent precipitation index were used to provide a pseudo infiltration estimation. Infiltration estimates based on surface wetness on a daily basis were then used to calculate the soil moisture in the surface 0–23 cm of the soil by use of a modified antecedent precipitation index. Reasonably good results were obtained (R2= 0.7162) when predicted soil moisture for the surface 23 cm was compared to measured moisture. Where the technique was modified to use only an estimate of surface moisture each three days an R2 value of 0.7116 resulted for the same data set. Correlations between predicted and actual soil moisture fall off rapidly for repeat observations more than three days apart. The algorithms developed in this study may be used over relatively flat agricultural lands to provide improved estimates of soil moisture to a depth greater than the depth of penetration for the sensor.  相似文献   

17.
The climate simulations from atmospheric general circulation models (GCMs) are often used to analyze the potential effects of climate change on environmental resources. It has been demonstrated that there are differences among the simulations from various GCMs, on spatial scales ranging from global to regional. This paper quantifies the differences in temperature and precipitation simulated by three major GCMs for four specific regions: an agricultural region (the North American winter wheat belt), a hydrologic region (the Great Basin), a demographic region (the high-density population corridor of the northeast United States), and a political region (the state of Texas). Both the current (control) climate and the climatic response to a doubling of atmospheric carbon dioxide (CO2) are consideredIn each region, even when the data are averaged on a seasonal basis, marked differences occurred in the areal average climate simulated by the different GCMs for both the control climate and the doubled-CO2 climate. Thus, climate impact studies based on the simulations of more than one GCM could easily yield a range of possible results  相似文献   

18.
Monthly temperature and precipitation data for 923 United States Geological Survey 8-digit hydrologic units are used as inputs to a monthly water balance model to compute monthly actual evapotranspiration, soil moisture storage, and runoff across the western United States (U.S.) for the period 1900 through 2020. Time series of these water balance variables are examined to characterize and explain the dry conditions across the western U.S. since the year 2000. Results indicate that although precipitation deficits account for most of the changes in actual evapotranspiration and runoff, increases in temperature primarily explain decreases in soil moisture storage. Specifically, temperature has been particularly impactful on the magnitude of negative departures of soil moisture storage during the spring (April through June) and summer (July through September) seasons. These effects on soil moisture may be particularly detrimental to agriculture in regions already stressed by drought such as the western U.S.  相似文献   

19.
This paper describes the application of a continuous daily water balance model called SWAT (Soil and Water Assessment Tool) for the conterminous U.S. The local water balance is represented by four control volumes; (1) snow, (2) soil profile, (3) shallow aquifer, and (4) deep aquifer. The components of the water balance are simulated using “storage” models and readily available input parameters. All the required databases (soils, landuse, and topography) were assembled for the conterminous U.S. at 1:250,000 scale. A GIS interface was utilized to automate the assembly of the model input files from map layers and relational databases. The hydrologic balance for each soil association polygon (78,863 nationwide) was simulated without calibration for 20 years using dominant soil and land use properties. The model was validated by comparing simulated average annual runoff with long term average annual runoff from USGS stream gage records. Results indicate over 45 percent of the modeled U.S. are within 50 mm of measured, and 18 percent are within 10 mm without calibration. The model tended to under predict runoff in mountain areas due to lack of climate stations at high elevations. Given the limitations of the study, (i.e., spatial resolution of the data bases and model simplicity), the results show that the large scale hydrologic balance can be realistically simulated using a continuous water balance model.  相似文献   

20.
ABSTRACT: Global climate change due to the buildup of greenhouse gases in the atmosphere has serious potential impacts on water resources in the Pacific Northwest. Climate scenarios produced by general circulation models (GCMs) do not provide enough spatial specificity for studying water resources in mountain watersheds. This study uses dynamical downscaling with a regional climate model (RCM) driven by a GCM to simulate climate change scenarios. The RCM uses a subgrid parameterization of orographic precipitation and land surface cover to simulate surface climate at the spatial scale suitable for the representation of topographic effects over mountainous regions. Numerical experiments have been performed to simulate the present-day climatology and the climate conditions corresponding to a doubling of atmospheric CO2 concentration. The RCM results indicate an average warming of about 2.5°C, and precipitation generally increases over the Pacific Northwest and decreases over California. These simulations were used to drive a distributed hydrology model of two snow dominated watersheds, the American River and Middle Fork Flathead, in the Pacific Northwest to obtain more detailed estimates of the sensitivity of water resources to climate change. Results show that as more precipitation falls as rain rather than snow in the warmer climate, there is a 60 percent reduction in snowpack and a significant shift in the seasonal pattern of streamflow in the American River. Much less drastic changes are found in the Middle Fork Flathead where snowpack is only reduced by 18 percent and the seasonal pattern of streamflow remains intact. This study shows that the impacts of climate change on water resources are highly region specific. Furthermore, under the specific climate change scenario, the impacts are largely driven by the warming trend rather than the precipitation trend, which is small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号