共查询到20条相似文献,搜索用时 15 毫秒
1.
Charles H. Taylor Jim C. Loftis 《Journal of the American Water Resources Association》1989,25(4):715-726
ABSTRACT: The detection of gradual trends in water quality time series is increasing in importance as concern grows for diffuse sources of pollution such as acid precipitation and agricultural non-point sources. A significant body of literature has arisen dealing with trend detection in water quality variables that exhibit seasonal patterns. Much of the literature has dealt with seasonality of the first moment. However, little has been mentioned about seasonality in the variance, and its effect upon the performance of trend detection techniques. In this paper, eight methods of trend detection that arise from both the statistical literature as well as the water quality literature have been compared by means of a simulation study. Varying degrees of seasonality in both the variances and the means have been introduced into the artificial data, and the performances of these procedures are analyzed. Since the focus is on lake and ground water quality monitoring, quarterly sampling and short to moderate record lengths are examined. 相似文献
2.
Robert H. Montgomery Jim C. Loftis 《Journal of the American Water Resources Association》1987,23(4):653-662
ABSTRACT: A major concern in managing water resources is whether or not water quality variables have changed over time or space. The two-sample Student's t-test is probably the most commonly used statistical test for this purpose. Given that the underlying assumptions of the test may often be violated by water quality variables, a major concern regarding applicability of the test arises. This paper reviews and synthesizes available information in order to examine the effects of non-normality, unequal variances, serial dependence, and seasonality on the performance of the two-sample t-test. The results suggest the t-test is robust for non-normal distributions if the distributions have the same shape (either symmetric or skewed) and sample sizes are equal. The t-test is also robust for unequal variances if the sample sizes are equal. The t-test appears not to be robust when: 1) samples come from two distributions of different shape, 2) samples have unequal variances and unequal sample sizes, 3) serial dependence in observations is present, or 4) seasonal changes, in concentration are present and not removed. 相似文献
3.
O. Thas L. Van Vooren J. P. Ottoy 《Journal of the American Water Resources Association》1998,34(2):347-357
ABSTRACT: In this paper four nonparametric tests for monotonic trend detection are compared with respect to their power and accuracy. The importance of comparing powers at equal empirical significance levels rather than nominal levels is stressed. Therefore, an appropriate graphical method is presented. The effect of the sampling frequency is also assessed using Monte Carlo simulations and a trajectory representation that visualizes the dynamics of the trade-off between the type I and type II errors. These methods are applied to compare four nonparametrical tests (seasonal Mann. Kendall, modified seasonal Mann-Kendall, covariance eigenvalue and covariance inversion) under several conditions. It is concluded with respect to the power that it is not worthwhile for the modified seasonal Mann-Kendall test applied to the AR(1) process considered in this paper to increase the sampling frequency from monthly to biweekly for detecting a monotonic trend of 5 percent, 10 percent, or 15 percent of the process variance. Under these conditions the seasonal Mann-Kendall test is highly liberal, while the covariance inversion and the covariance eigenvalue test are conservative. This research is situated in the development of an efficient sampling design for the Flemish water quality monitoring network. 相似文献
4.
Coastal Environmental Impacts Brought About by Alterations to Freshwater Flow in the Gulf of Mexico 总被引:7,自引:0,他引:7
/ Freshwater inflow is one of the most influential landscape processes affecting community structure and function in lagoons, estuaries, and deltas of the world; nevertheless there are few reviews of coastal impacts associated with altered freshwater inputs. A conceptual model of the possible influences of freshwater inflows on biogeochemical and trophic interactions was used to structure this review, evaluate dominant effects, and discuss tools for coastal management. Studies in the Gulf of Mexico were used to exemplify problems commonly encountered by coastal zone managers and scientists around the world. Landscape alteration, impacting the timing and volume of freshwater inflow, was found to be the most common stress on estuarine systems. Poorly planned upstream landscape alterations can impact wetland and open-water salinity patterns, nutrients, sediment fertility, bottom topography, dissolved oxygen, and concentrations of xenobiotics. These, in turn, influence productivity, structure, and behavior of coastal plant and animal populations. Common biogeochemical impacts include excessive stratification, eutrophication, sediment deprivation, hypoxia, and contamination. Common biological impacts include reduction in livable habitats, promotion of "exotic" species, and decreased diversity. New multiobjective statistical models and dynamic landscape simulations, used to conduct policy-relevant experiments and integrate a wide variety of coastal data for freshwater inflow management, assume that optimum estuarine productivity and diversity is found somewhere between the stress associated with altered freshwater flow and the subsidy associated with natural flow. These models attempt to maximize the area of spatial overlap where favorable dynamic substrates, such as salinity, coincide with favorable fixed substrates, such as bottom topography. Based upon this principle of spatial overlap, a statistical performance model demonstrates how population vitality measurements (growth, survival, and reproduction) can be used to define sediment, freshwater, and nutrient loading limits. Similarly, a spatially articulate landscape simulation model demonstrates how cumulative impacts and ecosystem processes can be predicted as a function of changes in freshwater, sediment, and nutrient inflows.KEY WORDS: Resource management; Landscape impacts; Freshwater discharge; Coastal, ecosystem models; Coastal wetlands 相似文献
5.
James P. Hughes Steven P. Millard 《Journal of the American Water Resources Association》1988,24(3):521-531
ABSTRACT: A common problem arises in testing for trends in water quality when observations are reported as “less than detection limit.” If a single detection limit is used for the entire study, existing non-parametric statistical methods, modified for ties, are applicable. If, however, the detection limit varies during the course of the study, resulting in multiple detection limits, then the commonly used trend detection methods are not appropriate. A statistic similar to Kendall's tau, but based on expected ranks, is proposed. Monte Carlo simulations show that the normal approximation to the distribution of this statistic is quite good, even for small samples and a large proportion of censored observations. The statistic is also shown to have greater power than the ad-hoc method of treating all observations less than the target censored observation as tied. 相似文献
6.
S. J. Ursic 《Journal of the American Water Resources Association》1991,27(2):303-315
ABSTRACT: Hydrologic responses to logging with skidders and responses to logging with a cable yarder are compared. After a 23-year calibration with an undisturbed control catchment, mixed stands of shortleaf pine (Pinus echinata Mill.) and hardwoods were clearfelled on two small catchments in the hilly Coastal Plain of north Mississippi and observed for five years. Runoff increased 370 mm (skidded) and 116 mm (yarded) during the first year with 1876 mm of rainfall, and 234 mm (skidded) and 228 mm (yarded) during the second year when 1388 mm of precipitation equaled the calibration mean. Sediment concentrations for the yarded catchment during the first two years averaged 641 and 1,629 mg L?1, respectively, and yields were 6,502 and 12,086 kg ha?1. Compared to calibration means of 74 mg L?1 and 142 kg ha?1, these extreme values can be attributed largely to transport of sediment stored in the channel and to erosion of subsurface flow paths, which was exacerbated by high flow volumes. During the first year, the concentration (231 mg L?1) and yield (2,827 kg ha?1) for the control catchment also exceeded the calibration means. However, concentrations (134 mg L?1) and yields (1,806 kg ha?1) for the skidded catchment were about 40 percent lower than for the control catchment during the first year, and were higher than those for the control only during the second year. Because deep percolation was limited and because rainfall was unusually high, increases in flows and sediment concentrations and yields probably approximate maximum responses to clearcut harvesting in the uplands of the southern Coastal Plain. 相似文献
7.
J. B. Harcum Jim C. Loftis Robert C. Ward 《Journal of the American Water Resources Association》1992,28(3):469-478
ABSTRACT: The use of nonparametric tests for monotonic trend has flourished in recent years to support routine water quality data analyses. The validity of an assumption of independent, identically distributed error terms is an important concern in selecting the appropriate nonparametric test, as is the presence of missing values. Decision rules are needed for choosing between alternative tests and for deciding whether and how to pre-process data before trend testing. Several data pre-processing procedures in conjunction with the Mann-Kendall tau and the Seasonal Kendall test (with and without serial correlation correction) are evaluated using synthetic time series with generated serial correlation and missing data. A composite test (pre-testing for serial correlation followed by one of two trend tests) is evaluated and was found to perform satisfactorily. 相似文献
8.
M.S. Bedinger James R. Harrill 《Journal of the American Water Resources Association》2006,42(4):827-839
ABSTRACT: Devils Hole is a collapse depression connected to the regional carbonate aquifer of the Death Valley ground water flow system. Devils Hole pool is home to an endangered pupfish that was threatened when irrigation pumping in nearby Ash Meadows lowered the pool stage in the 1960s. Pumping at Ash Meadows ultimately ceased, and the stage recovered until 1988, when it began to decline, a trend that continued until at least 2004. Regional ground water pumping and changes in recharge are considered the principal potential stresses causing long term stage changes. A regression was found between pumpage and Devils Hole water levels. Though precipitation in distant mountain ranges is the source of recharge to the flow system, the stage of Devils Hole shows small change in stage from 1937 to 1963, a period during which ground water withdrawals were small and the major stress on stage would have been recharge. Multiple regression analyses, made by including the cumulative departure from normal precipitation with pumpage as independent variables, did not improve the regression. Drawdown at Devils Hole was calculated by the Theis Equation for nearby pumping centers to incorporate time delay and drawdown attenuation. The Theis drawdowns were used as surrogates for pumpage in multiple regression analyses. The model coefficient for the regression, R2= 0.982, indicated that changes in Devils Hole were largely due to effects of pumping at Ash Meadows, Amargosa Desert, and Army 1. 相似文献
9.
Sandy beaches are the prime sites for human recreation and underpin many coastal economies and developments. In many coastal
areas worldwide, beach recreation relies on the use of off-road vehicles (ORVs) driven on the shore. Yet, the use of ORVs
is not universally embraced due to social conflicts with other beach user groups and putative environmental consequences of
vehicle traffic on sandy shores. Such ecological impacts of ORVs are, however, poorly understood for endobenthic invertebrates
of the intertidal zone seawards of the dunes. Consequently, this study quantified the degree to which assemblages of intertidal
beach invertebrates are affected by traffic. The study design comprised a series of temporally replicated spatial contrasts
between two reference sites (no ORVs) and two beaches with heavy ORV traffic (in excess of 250,000 vehicles per year) located
in South-East Queensland, Australia. Macrobenthic assemblages on ORV-impacted beaches had significantly fewer species at substantially
reduced densities, resulting in marked shifts in community composition and structure. These shifts were particularly strong
on the middle and upper shore where vehicle traffic was concentrated. Strong effects of ORVs were detectable in all seasons,
but increased towards the summer months as a result of heavier traffic volumes. This study provides clear evidence that ORVs
can have substantial impacts on sandy beach invertebrates that are manifested throughout the whole community. Demonstrating
such an ecological impact caused by a single type of human use poses a formidable challenge to management, which needs to
develop multi-faceted approaches to balance environmental, social, cultural, and economic arguments in the use of sandy shores,
including management of “beach traffic.” 相似文献
10.
Jim C. Loftis Graham B. McBride Julian C. Ellis 《Journal of the American Water Resources Association》1991,27(2):255-264
ABSTRACT: An assumption of scale is inherent in any environmental monitoring exercise. The temporal or spatial scale of interest defines the statistical model which would be most appropriate for a given system and thus affects both sampling design and data analysis. Two monitoring objectives which are strongly tied to scale are the estimation of average conditions and the evaluation of trends. For both of these objectives, the time or spatial scale of interest strongly influences whether a given set of observations should be regarded as independent or serially correlated and affects the importance of serial correlation in choosing statistical methods. In particular serial correlation has a much different effect on the estimation of long-term means than it does on the estimation of specific-period means. For estimating trends, a distinction between serial correlation and trend is scale dependent. An explicit consideration of scale in monitoring system design and data analysis is, therefore, most important for producing meaningful statistical information. 相似文献
11.
ABSTRACT: Bivalves are used as bioindicators to assess trends of the chemical quality of coastal and marine environments due to their ability to concentrate chemicals. These shellfish are subject to seasonal physiological changes influencing the chemical concentration. Using quarterly data, we model concentration via linear regression with a biologically based seasonal component. This was applied to cadmium concentration measured in the blue mussel (Mytilus edulis) at three sites in the Seine estuary (Normandy, France). In this case we have a high concentration season from January to June and a “low concentration” season from July to December. This season definition was checked a posteriori, using box-and-whisker plots and a statistical test of comparison of pair-wise adjusted least-squares mean differences, and it appears to be very reasonable. We averaged data by season and across sites. Our final model (R2= 0.846 with N= 27 observations) includes highly significant terms: a season effect, which accounts for 45% of the total variability, a linear and a quadratic time term. Outliers were identified by high Studentized residual values and attributed to bias in the temporal sampling schemes. The methodology developed will further be used with other shellfish and/or other trace elements and organic chemicals. 相似文献
12.
Charles E. Sasser Malcolm D. Dozier James G. Gosselink John M. Hill 《Environmental management》1986,10(5):671-680
A computerized geographic information system with site-specific change-detection capabilities was developed to document amounts, rates, locations, and sequences of loss of coastal marsh to open water in Barataria Basin, Louisiana, USA. Land-water interpretations based on 1945, 1956, 1969, and 1980 aerial photographs were used as input, and a modified version of the Earth Resources Laboratory Applications Software developed by the National Aeronautics and Space Administration was used as a spatial data base management system. Analysis of these data sets indicates that rates of marsh loss have increased from 0.36% per year in the 1945–56 period, to 1.03% per year in 1956–69, and to 1.96% per year in 1969–80. The patterns of marsh loss indicate that the combination of processes causing degradation of the marsh surface does not affect all areas uniformly. Marsh loss rates have been highest where freshwater marshes have been subject to saltwater intrusion. The increase in the wetland loss rates corresponds to accelerated rates of subsidence and canal dredging and to a cumulative increase in the area of canals and spoil deposits. 相似文献
13.
John B. Williams John E. Pinder 《Journal of the American Water Resources Association》1990,26(2):343-352
ABSTRACT: The quantity, seasonality, and sources of flow were analyzed for two segments of Four Mile Branch, a small stream on the Coastal Plain of South Carolina using data obtained from USGS gauging stations. Flows in the “upstream segment,” a 12.6-km2 watershed comprising the head waters of Four Mile Branch, averaged 0.129 m3 s?1 and showed a distinctly seasonal pattern, with maximum flows in February and March and minimum flows in September and October. Inflow to the “downstream segment,” a 2.2-km2 watershed associated with the main channel, averaged 0.059 m3 s?1 and showed no seasonal patterns. Discharges per unit area of watershed were greater for the downstream segment, 0.83 m3 per year per m2 of land surface, than for the upstream segment, 0.32 m3 per year per m2. The differences in discharge rates and seasonalities between the two segments reflect differences in aquifers supplying the different segments. Analyses of Streamflow by hydrograph separation and Streamflow partitioning methods indicated that greater than 90 percent of the flows in the upstream and downstream segments were due to ground water-driven base flows. 相似文献
14.
ABSTRACT: The relative abundance of small mammals in five forest land cover types on the upper Coastal Plain of north Mississippi was determined. Burrowing mammals accounted for one-half of the total captures; one shrew species that accounted for over one-fourth of the total captures had a strong affinity for well-stocked pine plantations. The opportunity for detention and retention of rainfall was enhanced by burrowing activity. Reductions of stormflow volumes 12 to 15 years after replacing poor quality, upland hardwoods with loblolly pine were only partially explained by increased interception of rainfall; much of the residual reductions are postulated to be due to small mammal burrows. Small mammal activity deserves further study as an important aspect of forest land hydrology. 相似文献
15.
Catherine Denault Robert G. Millar Barbara J. Lence 《Journal of the American Water Resources Association》2006,42(3):685-697
ABSTRACT: Stationarity of rainfall statistical parameters is a fundamental assumption in hydraulic infrastructure design that may not be valid in an era of changing climate. This study develops a framework for examining the potential impacts of future increases in short duration rainfall intensity on urban infrastructure and natural ecosystems of small watersheds and demonstrates this approach for the Mission/Wagg Creek watershed in British Columbia, Canada. Nonstationarities in rainfall records are first analyzed with linear regression analysis, and the detected trends are extrapolated to build potential future rainfall scenarios. The Storm Water Management Model (SWMM) is used to analyze the effects of increased rainfall intensity on design peak flows and to assess future drainage infrastructure capacity according to the derived scenarios. While the framework provided herein may be modified for cases in which more complex distributions for rainfall intensity are needed and more sophisticated stormwater management models are available, linear regressions and SWMM are commonly used in practice and are applicable for the Mission/Wagg Creek watershed. Potential future impacts on stream health are assessed using methods based on equivalent total impervious area. In terms of impacts on the drainage infrastructure, the results of this study indicate that increases in short duration rainfall intensity may be expected in the future but that they would not create severe impacts in the Mission/Wagg Creek system. The equivalent levels of imperviousness, however, suggest that the impacts on stream health could be far more damaging. 相似文献
16.
Haorong Lu S. Samuel Li Jinsong Guo 《Journal of the American Water Resources Association》2013,49(1):90-102
Lu, Haorong, S. Samuel Li, and Jinsong Guo, 2012. Modeling Monthly Fluctuations in Submersion Area of a Dammed River Reservoir: A Case Study. Journal of the American Water Resources Association (JAWRA) 1‐13. DOI: 10.1111/jawr.12003 Abstract: Fluctuations in water submersion of the Three Gorges Reservoir in China have not been explored in spite of their important implications for shoreline erosion and other undesirable consequences. This article aims to quantify the monthly fluctuations in response to changing hydraulic parameters and regional climatic factors. Flow velocity and water levels distributed along the 609‐km long dammed river reservoir are calculated with a one‐dimensional hydrodynamics model. Evaporation of water from the surface of the reservoir is determined using mass transfer‐based methods. Calculated flow velocities and water levels compare well with field data. We show that the water surface slope decreases with rising water level at the dam, and decreases to almost zero during the winter months of water storage when the downstream water level reaches the normal pool level. The submersion area varies between 830 and 1,070 km2 over the year or over 20% of the reservoir zone will experience the annual cycle of dry land and partial or complete submersion. These fluctuations are of relevance to shoreline management and to the prevention and restoration of shoreline erosion. Evaporation is estimated to fluctuate between 1,240 and 26,110 tons of water per month per kilometer length of reservoir channel; this can possibly affect the hydrological budget of the reservoir region. The simple methodologies discussed in this article can easily be applied to other dammed river reservoirs for submersion estimates. 相似文献
17.
Johnnie N. Moore Alicia S. Arrigoni Andrew C. Wilcox 《Journal of the American Water Resources Association》2012,48(5):925-938
Moore, Johnnie N., Alicia S. Arrigoni, and Andrew C. Wilcox, 2012. Impacts of Dams on Flow Regimes in Three Headwater Subbasins of the Columbia River Basin, United States. Journal of the American Water Resources Association (JAWRA) 48(5): 925‐938. DOI: 10.1111/j.1752‐1688.2012.00660.x Abstract: We compared long‐term changes in flow regimes resulting from climate change with those resulting from dams in three matched pairs of natural and modified headwater subbasins of the Columbia River. Based on the analysis of 12 flow‐regime metrics, we found that damming had minimal effect on most quantity of flow metrics, but major effect on timing of flow metrics, especially those representing “spring runoff.” In all modified subbasins, “spring runoff” metrics occurred much earlier than natural flow (up to ~44 days earlier for April‐July flows). Storage capacity modulated the magnitude of timing of flow‐metric changes, with the largest storage capacity leading to the most change. However, even in subbasins with low storage capacity, we found significant change in most timing of flow metrics. We also found that damming, especially in subbasins with higher storage capacity, overwhelmed climate variability in all basins for most flow metrics. This shows that reservoir operations need to be modified to more closely match the natural timing of flow regimes to promote positive ecologic response in modified rivers, even in basins where quantity of flow metrics have not changed substantially as a result of damming. 相似文献
18.
C. D. Heatwole A. B. Bottcher L. B. Baldwin 《Journal of the American Water Resources Association》1987,23(1):127-131
ABSTRACT: A model was developed to evaluate the cost-effectiveness of alternative “best management practice” (BMP) implementation schemes on two agricultural basins in Florida. The model selectively applies BMPs throughout the basin on a field by field basis, estimates the associated costs, and predicts the relative water quality improvement (reductions in nitrogen and phosphorus). The water quality model links field scale simulation (for detailed BMP evaluation) with basin delivery and attenuation functions to predict the basin-wide effects of any combination of BMPs. Fifteen BMP scenarios were evaluated to aid in prioritizing BMPs for implementation in these basins. Applying the maximum level of BMPs is estimated to cost around $1.2 million (annually), while the four most cost-effective BMPs would cost only one quarter as much, yet are projected to provide approximately 90 percent of the water quality improvement. 相似文献
19.
Daniel M. Evans Carl E. Zipper Erich T. Hester Stephen H. Schoenholtz 《Journal of the American Water Resources Association》2015,51(5):1436-1452
Surface coal mining operations alter landscapes of the Appalachian Mountains, United States, by replacing bedrock with mine spoil, altering topography, removing native vegetation, and constructing mine soils with hydrologic properties that differ from those of native soils. Research has demonstrated hydrologic effects of mining and reclamation on Appalachian landscapes include increased peakflows at newly mined and reclaimed watersheds in response to strong storm events, increased subsurface void space, and increased base flows. We review these investigations with a focus on identifying changes to hydrologic flow paths caused by surface mining for coal in the Appalachian Mountains. We introduce two conceptual control points that govern hydrologic flow paths on mined lands, including the soil surface that partitions infiltration vs. surface runoff and a potential subsurface zone that partitions subsurface storm flow vs. deeper percolation. Investigations to improve knowledge of hydrologic pathways on reclaimed Appalachian mine sites are needed to identify effects of mining on hydrologic processes, aid development of reclamation methods to reduce hydrologic impacts, and direct environmental mitigation and public policy. 相似文献
20.
Richard H. McCuen L. Douglas James 《Journal of the American Water Resources Association》1972,8(5):965-975
ABSTRACT. In urban hydrologic studies, it is often necessary to determine the effect of changes in urban land use patterns on such runoff characteristics as flood peaks and flow volumes. Nonparametric statistical methods have certain properties that make them a valuable tool for detecting hydrologic change caused by a treatment, such as urbanization, that changes watershed over a period of time. As many hydrologists do not have a working familiarity with nonparametric methods, a number of them are used for illustrative purposes to analyze the effect of urbanization on 24 years of annual flood peaks for a Louisville, Kentucky, watershed. In the example, urbanization was found to increase the central tendency, but not the dispersion of the peaks. Peak flows modeled by holding watershed parameters constant were also found to be increasing because of an upward trend in precipitation. By following the numerical examples in the paper and looking up test statistics in referenced sources, the reader can easily apply these methods to other situations. 相似文献