首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
ABSTRACT: The U.S. Army Corps of Engineers conducted an assessment of Great Lakes water resources impacts under transient climate change scenarios. The integrated model linked empirical regional climate downscaling, hydrologic and hydraulic models, and water resource use sub-models. The water resource uses include hydropower, navigation, shoreline damages, and wetland area. The study is unique in that both steady-state 2°CO2 and transient global circulation model (GCM) scenarios were used and compared to each other. The results are consistent with other impact studies in that high scatter in regional climate among the GCM scenarios lead to high uncertainty in impacts. Nevertheless, the transient scenarios show that in the near-term (approximately 20 years) significant changes could occur. This result only adds to the urgency of creating more flexible and robust management of water resources uses.  相似文献   

2.
    
ABSTRACT: The outflows of Lake Superior through the St. Marys River have been modified from natural conditions, initially by the construction of engineering works, such as bridges, and later by the construction of control works and the regulation of the lake. For all practical purposes, the period from 1860 to 1887 represents the natural river conditions. During the period 1888-1900 the regimen was modified by the construction of the International Railroad Bridge and the Chandler-Dunbar Power Canal. In 1901 construction began on the compensating works. Following the completion of the compensating works in August 1921, the Lake Superior outflows were regulated in accordance with the Orders of Approval, 26 and 27 May 1914. A hydrologic response model was developed to simulate the natural Lake Superior regime. The model was run for the 1860–1975 period to simulate natural Lake Superior levels and outflows. The simulated levels were compared with the recorded levels to determine the effect of regulation. It was found that regulation has resulted in a rise in Lake Superior water levels. The simulated natural outflows for the period from 1937 to 1975 were run through the Great Lakes hydrologic response model to analyze the regulation effects on Lakes Michigan-Huron, St. Clair, and Erie. The results show no long-term bias due to regulation.  相似文献   

3.
Waage, Marc D. and Laurna Kaatz, 2011. Nonstationary Water Planning: An Overview of Several Promising Planning Methods. Journal of the American Water Resources Association (JAWRA) 47(3):535‐540. DOI: 10.1111/j.1752‐1688.2011.00547.x Abstract: Climate change is challenging the way water utilities plan for the future. Observed warming and climate model projections now call into question the stability of future water quantity and quality. As water utilities cope with preparing for the large range of possible changes in climate and the resulting impacts on their water systems, many are searching for planning techniques to help them consider multiple possible conditions to better prepare for a different, more uncertain, future. Many utilities need these techniques because they cannot afford to delay significant decisions while waiting for scientific improvements to narrow the range of potential climate change impacts. Several promising methods are being tested in water utility planning and presented here for other water utilities to consider. The methods include traditional scenario planning, classic decision making, robust decision making, real options, and portfolio planning. Unfortunately, for utilities vulnerable to climate change impacts, there is no one‐size‐fits‐all planning solution. Every planning process must be tailored to the needs and capabilities of the individual utility.  相似文献   

4.
    
ABSTRACT: Recent research that couples climate change scenarios based on general circulation models (GCM) with Great Lakes hydrologic models has indicated that average water levels are projected to decline in the future. This paper outlines a methodology to assess the potential impact of declining water levels on Great Lakes waterfront communities, using the Lake Huron shoreline at Goderich, Ontario, as an example. The methodology utilizes a geographic information system (GIS) to combine topographic and bathymetric datasets. A digital elevation surface is used to model projected shoreline change for 2050 using water level scenarios. An arbitrary scenario, based on a 1 m decline from February 2001 lake levels, is also modeled. By creating a series of shoreline scenarios, a range of impact and cost scenarios are generated for the Goderich Harbor and adjacent marinas. Additional harbor and marina dredging could cost as much as CDN $7.6 million. Lake freighters may experience a 30 percent loss in vessel capacity. The methodology is used to provide initial estimates of the potential impacts of climate change that can be readily updated as more robust climate change scenarios become available and is adaptable for use in other Great Lakes coastal communities.  相似文献   

5.
    
There has recently been a return in climate change risk management practice to bottom‐up, robustness‐based planning paradigms introduced 40 years ago. The World Bank's decision tree framework (DTF) for “confronting climate uncertainty” is one incarnation of those paradigms. In order to better represent the state of the art in climate change risk assessment and evaluation techniques, this paper proposes: (1) an update to the DTF, replacing its “climate change stress test” with a multidimensional stress test; and (2) the addition of a Bayesian network framework that represents joint probabilistic behavior of uncertain parameters as sensitivity factors to aid in the weighting of scenarios of concern (the combination of conditions under which a water system fails to meet its performance targets). Using the updated DTF, water system planners and project managers would be better able to understand the relative magnitudes of the varied risks they face, and target investments in adaptation measures to best reduce their vulnerabilities to change. Next steps for the DTF include enhancements in: modeling of extreme event risks; coupling of human‐hydrologic systems; integration of surface water and groundwater systems; the generation of tradeoffs between economic, social, and ecological factors; incorporation of water quality considerations; and interactive data visualization.  相似文献   

6.
The Great Lakes Basin Commission has initiated a Framework Study to assess the present and projected water- and related land-resource problems and demands in the Great Lakes Basin. Poorly defined objectives; incomplete and inconsistent data arrays; unknown air, biota, water, and sediment interactions; and multiple planning considerations for interconnected, large lake systems hinder objective planning. To incorporate mathematical modeling as a planning tool for the Great Lakes, a two-phase program, comprising a feasibility and design study followed by contracted and in-house modeling, data assembly, and plan development, has been initiated. The models will be used to identify sensitivities of the lakes to planning and management alternatives, insufficiencies in the data base, and inadequately understood ecosystem interactions. For the first time objective testing of resource-utilization plans to identify potential conflicts will provide a rational and cost-effective approach to Great Lakes management. Because disciplines will be interrelated, the long-term effects of planning alternatives and their impacts on neighboring lakes and states can be evaluated. Testing of the consequences of environmental accidents and increased pollution levels can be evaluated, and risks to the resource determined. Examples are cited to demonstrate the use of such planning tools.  相似文献   

7.
ABSTRACT: A research project was undertaken for the U.S. Army Corps of Engineers to determine the relative utility and effectiveness of four well-known multicriteria decision making (MCDM) models for applications in realistic water resources planning settings. A series of experiments was devised to examine the impact of rating and ranking procedures on the decision making behavior of users (e.g., planners, managers, analysts, etc.) when faced with situations involving multiple evaluation criteria and numerous alternative planning projects. The four MCDM models tested were MATS-PC, EXPERT CHOICE, ARIADNE, and ELECTRE. Two groups of analysts and decision makers were tested. One group consisted of experienced U.S. Army Corps planners, while the other was comprised of graduate students. Based on a series of nonparametric statistical tests, the results identified EXPERT CHOICE as the preferred MCDM model by both groups based largely on ease of use and understandability. ARIADNE fostered the largest degree of agreement within and among the two groups of individuals tested. The tests also lend support to the claim that rankings are not affected significantly by the choice of decision maker (i.e., who uses any of these MCDM models) or which of these four models is used.  相似文献   

8.
Brown, Casey, William Werick, Wendy Leger, and David Fay, 2011. A Decision‐Analytic Approach to Managing Climate Risks: Application to the Upper Great Lakes. Journal of the American Water Resources Association (JAWRA) 47(3):524‐534. DOI: 10.1111/j.1752‐1688.2011.00552.x Abstract: In this paper, we present a risk analysis and management process designed for use in water resources planning and management under climate change. The process incorporates climate information through a method called decision‐scaling, whereby information related to climate projections is tailored for use in a decision‐analytic framework. The climate risk management process begins with the identification of vulnerabilities by asking stakeholders and resource experts what water conditions they could cope with and which would require substantial policy or investment shifts. The identified vulnerabilities and thresholds are formalized with a water resources systems model that relates changes in the physical climate conditions to the performance metrics corresponding to vulnerabilities. The irreducible uncertainty of climate change projections is addressed through a dynamic management plan embedded within an adaptive management process. Implementation of the process is described as applied in the ongoing International Upper Great Lakes Study.  相似文献   

9.
ABSTRACT: Two scenarios of CO2-induced climatic change are used to estimate changes in water use for a number of municipalities in the Great Lakes region of Canada and the United States. Both scenarios, based on General Circulation Models produced by the Goddard Institute for Space Studies (GISS) and Geophysical Fluid Dynamics Lab (GFDL), project warmer temperatures for the region. Using regression models based on monthly potential evapotranspiration for individual cities, it is projected that annual per capita water use will increase by a small amount, which will probably have only a marginal effect on water supplies in the Great Lakes basin. This method could also be used to assess the potential impacts of CO2-induced climatic change on water use by the agriculture and power sectors, as well as the effectiveness of water policy initiatives, such as price changes. More work is needed to project water use during peak periods (warm dry spells), which may occur more frequently in a 2 × CO2 climate in this region.  相似文献   

10.
ABSTRACT. Data from seven vessel cruises from late May to early November permitted definition of the surface water temperature regime of Lake Huron on a monthly basis. Quantitative values are furnished for a portion of the warming, stable, and cooling periods. The lowest temperatures occurred near the center of the lake, southwest of Manitoulin Island, and at De Tour Passage. The highest temperatures occurred at the mouth of Saginaw Bay and in the southernmost portions of the lake. Comparison of the surface water temperatures with temperatures in the 21 - 30 m layer shows the heat storage lag characteristic of large lakes.  相似文献   

11.
As complex social phenomena, public involvement processes are influenced by contextual factors. This study examined agency goals for public involvement and assessed the importance of local context in remedial action planning, a community-based water resources program aimed at the cleanup of the 42 most polluted locations in the Great Lakes Basin. Agency goals for public involvement in remedial action plans (RAPs) were agency-oriented and focused on public acceptance of the plan, support for implementation, and positive agency-public relations. Corresponding to these goals, citizen advisory committees were created in 75% of the RAP sites as a primary means for public input into the planning process. Factors that influenced the implementation of public involvement programs in remedial action planning included public orientation toward the remediation issue, local economic conditions, the interaction of diverse interests in the process, agency and process credibility, experience of local leadership, and jurisdictional complexity. A formative assessment of “community readiness” appeared critical to appropriate public involvement program design. Careful program design may also include citizen education and training components, thoughtful management of ongoing agency-public relations and conflict among disparate interests in the process, overcoming logistical difficulties that threaten program continuity, using local expertise and communication channels, and circumventing interjurisdictional complexities.  相似文献   

12.
    
Does collaborative modeling improve water resource management outcomes? How does collaborative modeling improve these outcomes? Does it always work? Under what conditions is collaborative modeling most appropriate? With support from the U.S. Army Corps of Engineers' Institute for Water Resources (IWR), researchers developed an evaluation framework to help address these questions. The framework links the effects of collaborative modeling on decision‐making processes with improvements in the extent to which resource management decisions, practices, and policies balance societal needs. Both practitioners' and participants' experiences suggest that under the right circumstances, collaborative modeling can generate these beneficial outcomes. Researchers developed performance measures and a survey to systematically capture these experiences and evaluate the outcomes of collaborative modeling processes. The survey can provide immediate feedback during a project to determine whether collaborative modeling is having the desired effect and whether course correction is warranted. Over the longer term, the systematic evaluation of collaborative modeling processes will help demonstrate in what ways and under what circumstances collaborative modeling is effective, inform and improve best practices, and raise awareness among water resource planners regarding the use of collaborative modeling for resource management decisions.  相似文献   

13.
    
ABSTRACT: The development of a regional water supply system for the six-county area of Northeastern Illinois is presented in this paper, including: 1) the establishment of regional water supply technical planning policies; 2) the development and utilization of a regional water supply computer model to identify the principal and secondary sources of water supply for each entity in the study area, based on an apparent cost-effective source analysis; and 3) utilization of the study results to develop for the year 2010 a suggested preliminary regional water supply system. Using the findings from task 2 above, a proposed plan for overall Lake Michigan water use through the year 2010 was also developed. The effects of the proposed regional water supply system on future water levels in the deep aquifer were also discussed.  相似文献   

14.
    
This article describes the collaborative modeling process and the resulting water resources planning model developed to evaluate water management scenarios in the transboundary Rio Grande basin. The Rio Grande is a severely water stressed basin that faces numerous management challenges as it crosses numerous jurisdictional boundaries. A collaborative process was undertaken to identify and model water management scenarios to improve water supply for stakeholders, the environment, and international obligations of water delivery from Mexico to the United States. A transparent and open process of data collection, model building, and scenario development was completed by a project steering committee composed of university, nongovernmental, and governmental experts from both countries. The outcome of the process was a planning model described in this article, with data and operations that were agreed on by water planning officials in each country. Water management scenarios were created from stakeholder input and were modeled and evaluated for effectiveness with the planning model.  相似文献   

15.
Increasing reservoir storage is commonly proposed to mitigate increasing water demand and provide drought reserves, especially in semiarid regions such as California. This paper examines the value of expanding surface reservoir capacity in California using hydroeconomic modeling for historical conditions, a future warm‐dry climate, and California's recently adopted policy to end groundwater overdraft. Results show expanding surface storage capacity rarely provides sizable economic value in most of California. On average, expanding facilities north of California's Delta provides some benefit in 92% of 82 years modeled under historical conditions and in 61% of years modeled in a warm‐dry climate. South of California's Delta, expanding storage capacity provides no benefits in 14% of years modeled under historical conditions and 99% of years modeled with a warm‐dry climate. Results vary across facilities between and within regions. The limited benefit of surface storage capacity expansion to statewide water supply should be considered in planning California's water infrastructure.  相似文献   

16.
    
Abstract: Flood management problems are inherently complex, time‐bound and multi‐faceted, involving many decision makers (with conflicting priorities and dynamic preferences), high decision stakes, limited technical information (both in terms of quality and quantity), and difficult tradeoffs. Multi‐Criteria Decision Support Systems (MCDSS) can help to manage this complexity and decision load by combining value judgments and technical information in a structured decision framework. A brief overview of MCDSS is presented, an original MCDSS architecture is put forth, and future research directions are discussed, including extensions to Multi‐Criteria Spatial Decision Support Systems and group MCDSS (as flood management involves shared resources and broad constituencies). With application to the September 11‐12, 2000 Tokai floods in Japan, the proposed multi‐criteria decision support instruments enhance communication among stakeholders and improve emergency management resource allocation. In summary, by making the links among flood knowledge, assumptions and choices more explicit, MCDSS increases stakeholder satisfaction, saves lives, and reduces flood management costs, thereby increasing decision‐making effectiveness, efficiency and transparency.  相似文献   

17.
The major barriers to successful lake management are institutional. However, in contrast to the technical and limnological dimensions of lake management, the institutional aspects of managing lakes have received little attention. The institutional factors that are important for successful lake management outcomes are: overlapping areal jurisdiction among governmental units, fragmented functional program responsibilities, ineffective coordination, limited authority, financial constraints, private sector roles, and inadequate public awareness and consensus. The range of typical institutional problems confronting lake management are well illustrated through experiences from the state of Wisconsin, USA. Because lake management programs with institutional shortcomings rarely realize their goals, it is critical to assimilate, evaluate, and apply our experience to date with the institutional arrangements necessary to effectively manage lake resources.  相似文献   

18.
    
Water availability risk is a local issue best understood with watershed‐scale quantification of both withdrawal and consumptive demands in the context of available supply. Collectively, all water use sectors must identify, understand, and respond to this risk. A highly visual and computationally robust decision support tool, Water Prism, quantitatively explores mitigation responses to water risk on both a facility‐level and basin‐aggregated basis. Water Prism examines a basin water balance for a 40‐ to 60‐year planning horizon, distinguishes among water use sectors, and accounts for ecosystem water needs. The 2012 Texas State Water Plan was used to apply Water Prism to the Big Cypress‐Sulphur Basin (Texas). The case study showed Water Prism to be an accurate and convenient tool to provide fine‐scale understanding of water use in the context of available supply, evaluate multi‐sector combinations of conservation strategies, and quantify the effects of future demands and water availability. Analyses demonstrated water availability risks for rivers and reservoirs can vary within a basin and must be calculated independently, simulation of water balance conditions can help illuminate potential impacts of increasing demands, and scenario simulations can be used to evaluate relative conservation efficacy of different water resource management strategies for each sector. Based on case study findings, Water Prism can serve as a useful assessment tool for regional water planners.  相似文献   

19.
ABSTRACT: Federal agencies in the U.S. and Canada continuously examine methods to improve understanding and forecasting of Great Lakes water level dynamics in an effort to reduce the negative impacts of fluctuating levels incurred by interests using the lakes. The short term, seasonal and long term water level dynamics of lakes Erie and Ontario are discussed. Multiplicative, seasonal ARIMA models are developed for lakes Erie and Ontario using standardized, monthly mean level data for the period 1900 to 1986. The most appropriate model identified for each lake had the general form: (1 0 1)(0 1 1)12. The data for each lake were subdivided by time periods (1900 to 1942;1 943 to 1986) and the model coefficients estimated for the subdivided data were similar, indicating general model stability for the entire period of record. The models estimated for the full data sets were used to forecast levels 1,2,3, and 6 months ahead for a period of high levels (1984 to 1986). The average absolute forecast error for Lake Erie was 0.049m, 0.076m, 0.091 m and 0.128m for the 1, 2,3, and 6 month forecasts, respectively. The average absolute forecast error for Lake Ontario was 0.058m, 0.095m, 0.120m and 0.136m for the 1,2,3, and 6 month forecasts, respectively. The ARIMA models provide additional information on water level time series structure and dynamics. The models also could be coordinated with current forecasting methods, possibly improving forecasting accuracy.  相似文献   

20.
    
ABSTRACT: A new screening approach is applied to a large‐scale multiple criteria water management problem to remove actions that cannot possibly be in the best subset. An inherent advantage of the approach is its ability to identify inferior actions by examining them individually, rather than within subsets. In a case study involving the selection of actions to address high water levels in the Great Lakes‐St. Lawrence Basin, two statistical indicators, the mode and the mean, are used to aggregate the opinions of experts and representatives of interest groups on the impacts of actions according to various criteria. Application of the screening approach shows that some of the proposed actions can be removed as they can never be in the optimal subset, thereby reducing the size of the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号