首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Green rust (Fe(4)(II)Fe(2)(III)(OH)(12)SO(4).3H(2)O) is an intermediate phase in the formation of iron (oxyhydr)oxides such as goethite, lepidocrocite, and magnetite. It is widely considered that green rust occurs in many soil and sediment systems. Green rust has been shown to reduce sorbed Se(VI), Cr(VI), and U(VI). In addition, it is also reported that green rust does not reduce As(V) to As(III). In this study, we have investigated for the first time the interaction between Sb(V) and green rust using XAFS and HPLC-ICP-MS. Most of the added Sb(V) was adsorbed on green rust, and Sb(III), a reduced form, was observed in both solid and liquid phases. Thus, it was shown that green rust has high affinity for Sb(V), and that Sb(V) was reduced to more toxic Sb(III) by green rust despite the high stability of the Sb(V) species even under reducing condition as reported in previous studies. Therefore, green rust can be one of the most important reducing agents for Sb(V), which can influence the Sb mobility in suboxic environments where green rust is formed.  相似文献   

2.
Kim HS  Kang WH  Kim M  Park JY  Hwang I 《Chemosphere》2008,73(5):813-819
Reactive reductants of cement/Fe(II) systems in dechlorinating chlorinated hydrocarbons are unknown. This study initially evaluated reactivities of potential reactive agents of cement/Fe(II) systems such as hematite (alpha-Fe(2)O(3)), goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), akaganeite (beta-FeOOH), ettringite (Ca(6)Al(2)(SO(4))(3)(OH)(12)), Friedel's salt (Ca(4)Al(2)Cl(2)(OH)(12)), and hydrocalumite (Ca(2)Al(OH)(6)(OH).3H(2)O) in reductively dechlorinating trichloroethylene (TCE) in the presence of Fe(II). It was found that a hematite/Fe(II) system shows TCE degradation characteristics similar to those of cement/Fe(II) systems in terms of degradation kinetics, Fe(II) dose dependence, and final products distribution. It was therefore suspected that Fe(III)-containing phases of cement hydrates in cement/Fe(II) systems behaved similarly to the hematite. CaO, which was initially introduced as a pH buffer, was observed to participate in or catalyze the formation of reactive reductants in the hematite/Fe(II) system, because its addition enhanced the reactivities of hematite/Fe(II) systems. From the SEM (scanning electron microscope) and XRD (X-ray diffraction) analyses that were carried out on the solids from hematite/Fe(II) suspensions, it was discovered that a sulfate green rust with a hexagonal-plate structure was probably a reactive reductant for TCE. However, SEM analyses conducted on a cement/Fe(II) system showed that hexagonal-plate crystals, which were presumed to be sulfate green rusts, were much less abundant in the cement/Fe(II) than in the hematite/Fe(II) systems. It was not possible to identify any crystalline minerals in the cement/Fe(II) system by using XRD analysis, probably because of the complexity of the cement hydrates. These observations suggest that major reactive reductants of cement/Fe(II) systems may differ from those of hematite/Fe(II) systems.  相似文献   

3.
Metal binding and release by solid humic acids (HAs) in soils and sediments can affect metal mobility and bioavailability. Isotherms for tight binding of Fe(III), Pb(II) and Cu(II) by a solid humic acid at pH2.0 fit the Langmuir binding model. Low pH was chosen to protonate the HA carboxylate groups and avoid metal cation hydrolysis. Binding of Fe(III), Pb(II) and Cu(II) occurs in one detectable step labeled A. Site capacities nu(A) are temperature-independent from 10.0 to 40.0 degrees C and point to binding by charge-neutralization to form solid complexes M(OOC-R)(n)(s), where n appears to be 2 for Pb(II) and 3 for Fe(III). Thermodynamic data pairs (DeltaH(A), DeltaS(A)) for metal binding are linearly correlated with previous data for Ca(II), Co(II) and Mg(II) binding by solid HAs.  相似文献   

4.
In this work Paspalum notatum root material was used to elucidate the influence of acid leaching pre-treatment and of sorption medium on metal adsorption. Ground P. notatum root was leached with 0.14M HNO(3). Leached root material (LRM) and non-leached root material (NLRM) were employed to flow sorption of Ni(II), Cu(II), Al(III) and Fe(III) in 0.5M CH(3)COONH(4) medium at pH 6.5. For LRM the sorption was also studied in 0.5M KNO(3) medium. The acid pre-treatment increased the sorption capacity (SC) for all ions studied. For the KNO(3) medium, Cu(II) and Fe(III) sorption was higher than in CH(3)COONH(4) and the type of the Ni(II) isotherm's model changed. The Freundlich model was the most representative isotherm model to describe metallic ions sorption. The (1)H NMR spectra showed differences between LRM and NLRM and the acid-basic potentiometric titration elucidated that acid-leaching procedure affected the root material sorption sites once only two predominant sorption sites were found for LRM (phenolic and amine, both able cations sorption) and five sorption sites (two carboxylic, amine and two phenolic) were founded for NLRM.  相似文献   

5.
6.
Sonolysis of alkylphenols in aqueous solution with Fe(II) and Fe(III)   总被引:6,自引:0,他引:6  
Yim B  Yoo Y  Maeda Y 《Chemosphere》2003,50(8):1015-1023
The sonolytic degradation of alkylphenols (APs), such as butylphenol, pentylphenol, octylphenol, and nonylphenol (NP), in water was investigated at a sound frequency of 200 kHz with an acoustic intensity of 6 W cm(-2) under argon, oxygen, and air atmospheres. The sonolytic degradation rate of the APs under the conditions of the present study depended upon their alkyl chain length. The decrease in the degradation rate by the radical scavenging effect was in the range of about 48-82% for APs in the presence of 3 mM 2-methyl-2-propanol. The free radicals play a significant role in the sonolytic degradation process of the APs. In the presence of Fe(II) and Fe(III), the pseudo-first-order rate constants for the sonolytic degradation of 30 microM NP as a function of the concentration of Fe(II) and Fe(III) were estimated under argon and oxygen. The maximum rate constants were observed at 50 microM Fe(II) (0.139 +/- 0.008 min(-1)) and 100 microM Fe(III) (0.103 +/- 0.001 min(-1)) under oxygen. The total organic carbon concentration (TOC) was investigated under same conditions. TOC decreased in the range of about 50-70% during the sonication in the presence of Fe(II) and Fe(III) under argon and oxygen. The sonochemical effects by the addition of Fe(II) and Fe(III) as catalyst during the sonication under the proper atmosphere result in a remarkable enhancement of degradation and mineralization.  相似文献   

7.
Gallard H  De Laat J 《Chemosphere》2001,42(4):405-413
The rates of degradation of 1,2,4-trichlorobenzene (TCB), 2,5-dichloronitrobenzene (DCNB), diuron and isoproturon by Fe(II)/H2O2 and Fe(III)/H2O2 have been investigated in dilute aqueous solution ([Organic compound]0 approximately 1 microM, at 25.0 +/- 0.2 degrees C and pH < or = 3). Using the relative rate method with atrazine as the reference compound, and the Fe(II)/H2O2 (with an excess of Fe(II)) and Fe(III)/H2O2 systems as sources of OH radicals, the rate constants for the reaction of OH* with TCB and DCNB were determined as (6.0 +/- 0.3)10(9) and (1.1 +/- 0.2)10(9) M(-1) s(-1). Relative rates of degradation of diuron and isoproturon by Fe(II)/H2O2 were about two times smaller in the absence of dissolved oxygen than in the presence of oxygen. These data indicate that radical intermediates are reduced back to the parent compound by Fe(II) in the absence of oxygen. Oxidation experiments with Fe(III)/H2O2 showed that the rate of decomposition of atrazine markedly increased in the presence of TCB and this increase has been attributed to a regeneration of Fe(II) by oxidation reactions of intermediates (radical species and dihydroxybenzenes) by Fe(III).  相似文献   

8.
Park EH  Jung J  Chung HH 《Chemosphere》2006,64(3):432-436
Both the photooxidation of EDTA and the photoreduction of metal ions in metal-EDTA systems were investigated. EDTA oxidation by TiO(2) photocatalysis occurred sequentially as Cu(II)-EDTA>Cu(II)/Fe(III)-EDTA>Fe(III)-EDTA. For Cu(II)-EDTA, EDTA was completely decomposed after only 60min of irradiation. The rate of EDTA decomposition was directly correlated with the initial Cu(II) concentration in the case of a mixed Cu(II)/Fe(III)-EDTA system. The metal ions in a single metal-EDTA complex were removed following significant decomposition of EDTA. For a mixed Cu(II)/Fe(III)-EDTA system, however, no copper was removed whereas almost all of the iron was removed. The iron and copper species deposited on the TiO(2) surface were identified via EPR and XPS as mixed FeO/Fe(3)O(4) and Cu(0)/Cu(2)O, respectively.  相似文献   

9.
Maas Pv  Brink Pv  Klapwijk B  Lens P 《Chemosphere》2009,75(2):243-249
BioDeNO(x), a novel technique to remove NO(x) from industrial flue gases, is based on absorption of gaseous nitric oxide into an aqueous Fe(II)EDTA(2-) solution, followed by the biological reduction of Fe(II)EDTA(2-) complexed NO to N(2). Besides NO reduction, high rate biological Fe(III)EDTA(-) reduction is a crucial factor for a succesful application of the BioDeNO(x) technology, as it determines the Fe(II)EDTA(2-) concentration in the scrubber liquor and thus the efficiency of NO removal from the gas phase. This paper investigates the mechanism and kinetics of biological Fe(III)EDTA(-) reduction by unadapted anaerobic methanogenic sludge and BioDeNO(x) reactor mixed liquor. The influence of different electron donors, electron mediating compounds and CaSO(3) on the Fe(III)EDTA(-) reduction rate was determined in batch experiments (21mM Fe(III)EDTA(-), 55 degrees C, pH 7.2+/-0.2). The Fe(III)EDTA(-) reduction rate depended on the type of electron donor, the highest rate (13.9mMh(-1)) was observed with glucose, followed by ethanol, acetate and hydrogen. Fe(III)EDTA(-) reduction occurred at a relatively slow (4.1mMh(-1)) rate with methanol as the electron donor. Small amounts (0.5mM) of sulfide, cysteine or elemental sulfur accelerated the Fe(III)EDTA(-) reduction. The amount of iron reduced significantly exceeded the amount that can be formed by the chemical reaction of sulfide with Fe(III)EDTA(-), suggesting that the Fe(III)EDTA(-) reduction was accelerated via an auto-catalytic process with an unidentified electron mediating compound, presumably polysulfides, formed out of the sulfur additives. Using ethanol as electron donor, the specific Fe(III)EDTA(-) reduction rate was linearly related to the amount of sulfide supplied. CaSO(3) (0.5-100mM) inhibited Fe(III)EDTA(-) reduction, probably because SO(3)(2-) scavenged the electron mediating compound.  相似文献   

10.

Efficient abatement of an iodinated X-ray contrast media iohexol by an emerging sulfite autoxidation advanced oxidation process is demonstrated, which is based on transition metal ion–catalyzed autoxidation of sulfite to form active oxidizing species. The efficacy of the combination of sulfite and transition metal ions (Ag(I), Mn(II), Co(II), Fe(II), Cu(II), Fe(III), or Ce(III)) was tested for iohexol abatement. Co(II) and Cu(II) are proven to show more pronounced catalytic activity than other metals at pH 8.0. According to the quenching studies, sulfate radical (SO4??) is identified to be the primary species for oxidation of iohexol. Increasing dosages of metal ion or sulfite and higher pH values are favorable for iohexol abatement. Inhibition of iohexol abatement is observed in the absence of dissolved oxygen, which is vital for the production of SO5?? and subsequent formation of SO4??. Overall, activation of sulfite to produce reactive radicals with extremely low Co(II) or Cu(II) concentrations (in the range of μg L?1) in circumneutral conditions is confirmed, which offers a potential SO4??-based advanced oxidation process in treatment of aquatic organic contaminants.

  相似文献   

11.
Zhou H  He Y  Lan Y  Mao J  Chen S 《Chemosphere》2008,72(6):870-874
The removal of Cr(VI) by zero-valent iron (Fe(0)) and the effect of three complex reagents, ethylenediaminetetraacetic acid (EDTA), NaF and 1,10-phenanthroline, on this reaction were investigated using batch reactors at pH values of 4, 5 and 6. The results indicate that the removal of Cr(VI) by Fe(0) is slow at pH 5.0 and that three complex reagents play different roles in the reaction. EDTA and NaF significantly enhance the reaction rate. The zero-order rate constants at pH 5.0 were 5.44 microM min(-1) in the presence of 4mM EDTA and 0.99 micrM min(-1) in the presence of 8 mM NaF, respectively, whereas that of control was only 0.33 micrM min(-1), even at pH=4.0. This enhancement is attributed to the formation of complex compounds between EDTA/NaF and reaction products, such as Cr(III) and Fe(III), which eliminate the precipitates of Cr(III), Fe(III) hydroxides and Cr(x)Fe(1-)(x)(OH)(3) and thus reduce surface passivation of Fe(0). In contrast, 1,10-phenanthroline, a complex reagent for Fe(II), dramatically decreases Cr(VI) reduction by Fe(0). At pH=4.0, the zero-order rate constant in the presence of 1mM of 1,10-phenanthroline was 0.02 micrM min(-1), decreasing by 99.7% and 93.9%, respectively, compared with the results in the presence and absence of EDTA. The results suggest that a pathway of the reduction of Cr(VI) to Cr(III) by Fe(0) may involve dissolution of Fe(0) to produce Fe(II), followed by reduction of Cr(VI) by Fe(II), rather than the direct reaction between Cr(VI) and Fe(0), in which Fe(0) transfers electrons to Cr(VI).  相似文献   

12.
The effects of chloride, nitrate, perchlorate and sulfate ions on the rates of the decomposition of hydrogen peroxide and the oxidation of organic compounds by the Fenton's process have been investigated. Experiments were conducted in a batch reactor, in the dark at pH < or = 3.0 and at 25 degrees C. Data obtained from Fe(II)/H2O2 experiments with [Fe(II)]0/[H2O2]0 > or = 2 mol mol(-1), showed that the rates of reaction between Fe(II) and H2O2 followed the order SO4(2-) > ClO4(-) = NO3- = Cl-. For the Fe(III)/H2O2 process, identical rates were obtained in the presence of nitrate and perchlorate, whereas the presence of sulfate or chloride markedly decreased the rates of decomposition of H2O2 by Fe(III) and the rates of oxidation of atrazine ([atrazine]0 = 0.83 microM), 4-nitrophenol ([4-NP]0 = 1 mM) and acetic acid ([acetic acid]0 = 2 mM). These inhibitory effects have been attributed to a decrease of the rate of generation of hydroxyl radicals resulting from the formation of Fe(III) complexes and the formation of less reactive (SO4(*-)) or much less reactive (Cl2(*-)) inorganic radicals.  相似文献   

13.
Iron-catalyzed oxidation of As(III) to As(V) can be highly effective for toxic arsenic removal via Fenton reaction and Fe(II) oxygenation. However, the contribution of ubiquitous organic ligands is poorly understood, despite its significant role in redox chemistry of arsenic in natural and engineered systems. In this work, selected naturally occurring organic ligands and synthetic ligands in co-oxidation of Fe(II) and As(III) were examined as a function of pH, Fe(II), H2O2, and radical scavengers (methanol and 2-propanol) concentration. As(III) was not measurably oxidised in the presence of excess ethylenediaminetetraacetic acid (EDTA) (i.e. Fe(II):EDTA < 1:1), contrasting with the rapid oxidation of Fe(II) by O2 and H2O2 at neutral pH under the same conditions. However, partial oxidation of As(III) was observed at a 2:1 ratio of Fe(II):EDTA. Rapid Fe(II) oxidation in the presence of organic ligands did not necessarily result in the coupled As(III) oxidation. Organic ligands act as both iron speciation regulators and radicals scavengers. Further quenching experiments suggested both hydroxyl radicals and high-valent Fe species contributed to As(III) oxidation. The present findings are significant for the better understanding of aquatic redox chemistry of iron and arsenic in the environment and for optimization of iron-catalyzed arsenic remediation technology.  相似文献   

14.
Xie L  Shang C 《Chemosphere》2006,64(6):919-930
Bromate reduction by Fe(0) with incorporation of copper or palladium was investigated in batch tests. The incorporation of copper led to an increase in the rate of bromate reduction, while incorporation of palladium did not show any effect on bromate reduction by Fe(0), regardless of the bimetal application techniques (either simultaneous addition of Cu(II) or Pd(IV) into the Fe-BrO3- reaction system or using copper or palladium amended iron for bromate removal). Surface analyses by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) techniques indicated that aqueous Cu(II) was reduced and incorporated into the iron surface to form Cu2O and Cu(0). Among these two species, pure Cu(0) is not an active electron donor to the bromate reduction reaction, as shown by there being no reduction from using Cu(0) powders alone and no enhancement by Fe(0) when physically mixed with Cu(0). Although it has been proposed in the literature that the enhancement of adsorption also contributes to the enhancement of chemical reduction, this is not the case here because adsorption decreased when Cu increased. The enhanced bromate reduction rate in the presence of copper observed here is most likely the result of the newly formed active Cu(I). The presence of PdO was evidenced by XPS but yielded no enhancement in bromate reduction. Finally, the Cu2O present on the iron surface because of copper impurities in commercially available iron was found to be involved in the bromate reduction and to accelerate the reduction rate.  相似文献   

15.
Mineralisation of Monuron photoinduced by Fe(III) in aqueous solution   总被引:1,自引:0,他引:1  
The degradation of Monuron (3-(4-chlorophenyl)-1,1-dimethylurea) photoinduced by Fe(III) in aqueous solution has been investigated. The rate of degradation depends on the concentration of Fe(OH)2+, the most photoreactive species in terms of *OH radical formation. These *OH radicals are able to degrade Monuron until total mineralisation. The primordial role of the speciation of Fe(III)-hydroxy complex in aqueous solution, for the efficiency of the elimination of pollutant, was shown and explained in detail. The formation of Fe(II) in the irradiated solution was monitored and correlated with the total organic carbon evolution. Degradation photoproducts were identified and a mechanism of degradation is proposed.  相似文献   

16.
The Microtox bioassay was used to establish dose-response curves for some toxic elements in aqueous solutions, namely, Zn(II), Pb(II), Cu(II), Hg(II), Ag(I), Co(II), Cd(II), Cr(VI), As(V) and As(III). Experiments were carried out at either pH 6.0 or pH 7.0 to indicate that pH may influence the measured toxicity of some elements due to pH-related changes of their chemical speciation. EC20 values, which represent a measurable threshold of toxicity, were determined for each element and were found to rank as Pb(II)>Ag(I)>Hg(II) approximately Cu(II)>Zn(II)>As(V)>Cd(II) approximately Co(II)>As(III)>Cr(VI). These values were compared to the limit concentrations allowed in industrial wastewater according to the official regulations in Catalonia (Spain). It appears that the Microtox test is sensitive enough for detecting some of the tested elements with respect to official regulations of Catalonia (Spain) dealing with pollution control, with the exception of cadmium, mercury, arsenate, arsenite and chromate.  相似文献   

17.
The aim of this paper was to investigate the capacity of a small water fern, Azolla caroliniana Willd. (Azollaceae), to purify waters polluted by Hg and Cr. Many plants are capable of accumulating heavy metals (called hyperaccumulators) and one of them is the water fern A. caroliniana. During 12 days of the experiment the fern was grown on the nutrient solution containing Hg2+, Cr3+ and CrO4(2-) ions, each in a concentration 0.1, 0.5 and 1.0 mg dm(-3). The presence of these ions caused a 20-31% inhibition of A. caroliniana growth, the highest in the presence of Hg(II) ions, in comparison to the control. After day 12 of the experiment, metal contents the solution decreased to 0-0.25 mg dm(-3), and this decrease comprised between 74 (Cr3+ 1.0 mg dm(-3) treatment) and 100% (CrO4(2-) 0.1 mg dm(-3) treatment). The fern took a lesser quantity of the metals from 0.1 mg dm(-3) treatments compared to 0.5 and 1.0 mg dm(-3) treatments. In the A. caroliniana tissues the concentration of heavy metals under investigation ranged from 71 to 964 mg kg(-1) dm; the highest level being found for Cr(III) containing nutrient solution.  相似文献   

18.

Background, aim, and scope  

In literature, the environmental applications of green rust (GR) have mainly been pointed out through the reduction of inorganic contaminants and the reductive dechlorination of chlorinated organics. However, reactions involving GR for the oxidation and mineralization of organic pollutants remain very scantly described. In this study, the ability of three synthetic Fe(II)–Fe(III) green rusts, GR(CO32−), GR(SO42−), and GR(Cl), to promote Fenton-like reaction was examined by employing phenol as a model pollutant. Unlike the traditional Fenton’s reagent (dissolved Fe(II) + H2O2), where the pH values have to be lowered to less than 4, the proposed reaction can effectively oxidize the organic molecules at neutral pH and could avoid the initial acidification which may be costly and destructive for the in situ remediation of contaminated groundwater and soils. The green rust reactivity towards the oxidative transformation of phenol was thoroughly evaluated by performing a large kinetic study, chemical analyses, and spectroscopic investigations.  相似文献   

19.
Lu J  Jin Q  He Y  Wu J 《Chemosphere》2007,69(7):1047-1054
Biodegradation behavior of nonylphenol polyethoxylates (NPEOs) under Fe(III)-reducing conditions was investigated. The study demonstrated that NPEOs could be rapidly biodegraded under Fe(III)-reducing conditions. Almost 60% of the total NPEOs were removed within three days and the maximum biodegradation rate was 34.95+/-0.84 microM d(-1). NPEOs were degraded via sequential removal of ether units under Fe(III)-reducing conditions. No nonylphenol polyethoxy-carboxylates (NPECs) were formed in this process. This ether removal process was coupled to Fe(III) reduction. Nonylphenol (NP), nonylphenol monoethoxylate (NP1EO), and nonylphenol diethoxylate (NP2EO) slightly accumulated in the anaerobic biodegradation process. The accumulation of these estrogenic metabolites led to a significant increase in the estrogenic activity during the biodegradation period. The calculated estrogenic activity reached its top on day 14 when the total concentration of these estrogenic metabolites was maximal. This is the first report of the primary biodegradation behavior of NPEOs under Fe(III)-reducing conditions. These findings are of major environmental importance in terms of the environmental behavior of NPEO contaminants in natural environment.  相似文献   

20.
The redox process between iron(III) (in dissolved form and as the mineral phase ferrihydrite) and phenolic substances has been examined. We investigated the relationship between the structure and reactivity for the dihydrobenzene reductants catechol, hydroquinone and resorcine, and for the 2-methoxyphenol guaiacol with iron(III), by determining the rate of the Fe(III) reduction as well as the production of CO2. This work demonstrates that catechol and guaiacol will be effectively oxidized to CO2 by reducing iron(III). Hydroquinone shows a reduction of iron(III), but no accompanying mineralization could be determined. In contrast, resorcine showed no reaction with Fe(II). The deciding factor on whether or not mineralization occurs were controlled by the position of the hydroxy groups. It is shown that phenolic substances with two hydroxy groups in the orthoposition or at least one hydroxy group and a methoxy group can be oxidized to CO2 while iron(III) is reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号