首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
烟草下脚料发酵制取乙醇   总被引:1,自引:0,他引:1  
通过单因素实验考察了硫酸浓度、固液比和水解时间对硫酸水解的影响。结果显示最优条件为:硫酸浓度为50%(w/w),固液比为10%(w/v),时间为100 min。烟草下脚料在最佳硫酸水解条件下,经5倍稀释,中和pH值至5~6。取经过滤后的水解液(FH)用酿酒酵母(Sacchharomyces cerevisiae)发酵产生乙醇,最大的乙醇浓度和乙醇产量分别为1.09g/L和54.5 g/kg。未过滤水解液(UFH,包括水解残渣)加入纤维素酶(70 U/100 mL)和酿酒酵母(Sacchharomyces cerevisiae)进行发酵,最大的乙醇浓度和乙醇产量分别为1.23 g/L和61.5 g/kg。  相似文献   

2.
通过模拟煅烧试验制取水泥熟料,参照JGJ 55-2000(《普通混凝土配比设计规程》)制取混凝土样品,参考SR003.1和NEN 7375浸出试验,分别研究液固比对粒状及块状混凝土样品中重金属(Cr、Ni和As)释放的影响。结果表明,在不同液固比条件下粒状混凝土中的重金属浸出浓度为Cr>Ni>As,Cr、As浸出浓度基本保持不变,分别为2 500 μg/L左右和5~6 μg/L,Ni在液固比(L∶S)<6时,浸出浓度随着液固比的增加而降低,在L∶S>6时,浸出浓度较稳定,为35.7~41.5 μg/L;浸出量均随着液固比的增加而增大。液固比(L∶S)<10时,块状混凝土中重金属累积释放量及扩散系数均随液固比的增加而增大,当L∶S>10时两者基本保持不变。  相似文献   

3.
茅草添加与温度变化对餐厨垃圾厌氧水解产酸的影响   总被引:1,自引:0,他引:1  
比较了茅草添加在温度变化条件下对餐厨垃圾厌氧水解过程小分子有机酸产量的影响,提出一种新型餐厨垃圾的资源化方式。研究结果显示,餐厨垃圾在55℃条件下厌氧水解主要产物为乳酸,达到25.7 g/L,其干物质转化率可以达到32.1% (g TS),而餐厨+茅草处理在同样条件下的乳酸产量为20.1 g/L,干物质转化率为25.1%。温度下降为37℃后继续进行的的厌氧水解,得到的主要产物是乙酸、丙酸和丁酸,餐厨处理和餐厨+茅草处理这两者的峰值分别为6.5、2.8、8.0和6.1 g/L、2.7 g/L和5.9 g/L。结果显示茅草添加可以在一定程度上调节水解产物的比例,而温度变化可以调控小分子有机酸的产量。本研究结果表明,厌氧水解是一种有潜力的小分子有机酸生产与餐厨垃圾资源化处理途径。  相似文献   

4.
为探讨稻秆负荷(即稻秆VS/污泥VSS)与发酵pH对稻秆厌氧发酵产酸系统启动过程产挥发性脂肪酸(VFAs)效果的影响,利用厌氧搅拌罐反应系统考察在不同的稻秆负荷(0.556、0.945、1.334和1.724 g/g)和不同的发酵pH(8.0、9.0和10.0)启动运行条件下的产酸性能,并分析了系统启动过程产酸与稻秆主要成分降解之间的关系。实验结果表明,VFAs浓度随稻秆负荷提高而增大,随发酵pH的升高而降低;发酵18 d时,发酵pH为9.0时,稻秆负荷1.334 g/g的产酸效果最好,VFAs浓度与稻秆产酸量分别为4 385.10 mg/L和2.19 gVFAs/g稻秆,此时半纤维素、纤维素和酸性洗涤木质素降解率分别为32.69%、22.53%和6.40%;稻秆负荷为0.945 g/g条件下,VFAs浓度在pH为8.0时达到最高值4 409.51 mg/L,此时稻秆降解量也最多,半纤维素、纤维素和酸性洗涤木质素降解率分别为28.60%、47.32%和22.69%。研究表明,稻秆负荷与发酵pH通过影响稻秆半纤维素、纤维素和木质素的降解影响稻秆厌氧发酵产酸的进程和效果。  相似文献   

5.
温度对热水解预处理高含固污泥特性的影响   总被引:1,自引:0,他引:1  
以含固率为10%的污泥为对象,研究不同温度和时间条件下热水解过程中有机物转化规律对污泥特性的影响。结果表明:随着热水解时间的延长和温度的升高,污泥中挥发性悬浮固体(VSS)的水解率逐渐升高。在热水解时间为20 min时,温度由150℃升高到180℃,VSS水解率由22.9%增至38.4%,污泥中VSS由46.28 g/L降低到40.63 g/L。水解液组分分析表明,溶解性化学需氧量(SCOD)主要组成为蛋白质(50%)、碳水化合物(15%~20%)、可挥发性脂肪酸(15%~20%)。水解液中氮主要以有机氮的形式存在。在热水解条件达到165℃、50 min时,氨氮浓度为1.16 g/L,之后,随着温度的升高和时间的延长,氨氮浓度基本不变。  相似文献   

6.
为研究谷氨酸发酵废菌体水解液用作培养基氮源的可行性,以蛋白质水解度和溶解度为衡量指标,采用化学、生物、物理以及这几种方法的联合处理,通过正交优化实验,得出了菌体蛋白水解的最佳工艺条件为化学-生物联合处理,在盐酸浓度3 mol·L~(-1)、温度110℃、料液比1:0.5、水解12 h后使用酸性蛋白酶酶解,调节料液pH为4、酶底比2.5%、温度55℃、酶解8 h,水解完成后蛋白质水解度达到47.18%,溶解度达到94.09%。在总氮相等的情况下,将水解液和酵母膏以不同的比例组合,替代正常发酵产γ-聚谷氨酸过程的氮源。结果表明谷氨酸发酵废菌体经过最佳工艺水解后,其水解液可以用作发酵产γ-聚谷氨酸的氮源。  相似文献   

7.
为研究混合水解对麦秸水解产酸的影响,以猪粪、厨余和蔬菜废物为原料,研究其分别与麦秸混合水解产酸的特性,分析了水解过程中pH值、COD、SCOD和VFAs的变化。结果表明,除麦秸+蔬菜废物最佳出料时间为3~9d外,麦秸、麦秸+厨余垃圾、麦秸+猪粪水解液最佳出料时间均为3~7d,7d后水解液COD浓度下降;将蔬菜废物与麦秸混合水解,水解液pH值降低幅度最大,水解液中总有机酸浓度最高,pH值最低为5.31,有机酸浓度最高达6.46g/L,且水解液中SCOD浓度、SCOD/COD比值最大;添加猪粪明显促进了麦秸有机物的水解溶出,麦秸单位干物质水解率和产酸率较对照分别提高了43%~134%和50.53%,但对提高水解液SCOD浓度、SCOD/COD比、TVFA浓度、降低水解液pH值的效果不如蔬菜废物;添加厨余垃圾的效果介于猪粪和蔬菜废物之间。从促进麦秸水解产酸的角度,以添加猪粪的效果最好。  相似文献   

8.
为研究底物浓度对玉米秸秆乙醇发酵过程中乙醇产率和乙醇发酵剩余残渣厌氧发酵产气特性的影响,在中温(37±0.2)℃条件下,利用实验室自制小型厌氧发酵装置,在底物浓度为2%、3%、4%和5%下开展周期为50 d的序批式厌氧发酵实验,探索不同底物浓度下玉米秸秆发酵乙醇产率和乙醇发酵剩余残渣厌氧发酵产气特性。结果表明:底物浓度对玉米秸秆乙醇发酵影响显著,当底物浓度为3%时,玉米秸秆厌氧发酵乙醇产量最大,达到39.04 g;底物浓度过低或过高均不适合后期厌氧发酵产甲烷的进行,当底物浓度为3%时,玉米秸秆乙醇发酵残渣表面纤维结构被破坏最明显,残渣厌氧发酵产甲烷实验最早在3 d出现产气峰值,挥发性固体单位甲烷产量为26.82 mL·g~(-1),并且累积产气量最高,挥发性固体单位累积甲烷产量达到270.01 mL·g~(-1),玉米秸秆乙醇发酵残渣还有较高的产气潜能;通过质量平衡分析得到,底物浓度为3%时,玉米秸秆生物转化过程中TS和VS去除率最高,分别为59.12%和79.07%。该研究可为玉米秸秆乙醇发酵工程提供参考。  相似文献   

9.
以实际垃圾渗滤液作为厌氧发酵基质,研究了初始pH为7.0、中温(37℃)条件下的发酵产氢、产甲烷特性。结果表明,利用垃圾渗滤液作为基质发酵产氢或甲烷时,氢气的最大累积产量为24.33mL(以每克COD计,下同),甲烷的最大累积产量为91.59mL,产氢发酵在初期存在明显的迟滞期,但是产甲烷发酵不存在明显迟滞期;产氢发酵的液相末端产物中含有大量的挥发性有机酸和乙醇,乙醇、乙酸、丁酸质量浓度分别为487.23、1 175.21、1 225.78mg/L,相比产氢发酵,产甲烷发酵的液相末端产物中乙醇、乙酸、丁酸质量浓度均较低,分别为256.38、106.73、107.42mg/L;产甲烷发酵的最终pH是6.32,接近中性,而产氢发酵的最终pH为4.21,呈明显酸性;产甲烷发酵对COD的去除率(41.78%)高于产氢发酵对COD的去除率(32.14%),可能是产氢发酵液相末端产物中的乙酸能被产甲烷菌利用,而被进一步降解。  相似文献   

10.
蛋白酶和EDTA-2Na协同作用对剩余污泥水解的影响   总被引:2,自引:0,他引:2  
采用投加蛋白酶和螯合剂乙二胺四乙酸二钠(EDTA-2Na)联合预处理剩余污泥,研究了蛋白酶浓度、温度和EDTA-2Na浓度对污泥酶法水解释碳效果的影响.结果表明,蛋白酶浓度、温度和EDTA-2Na浓度对剩余污泥水解的影响具有协同效应.在最佳蛋白酶浓度20 mg/g TS条件下,剩余污泥释放的SCOD为1 318.82 mg/L.同时,在最佳螯合剂ED-TA-2Na浓度0.20 g/g TS下,SCOD为9 014 mg/L.在20 mg/g TS的蛋白酶和0.20 g/g TS的EDTA-2Na的联合作用下,SCOD达到12 628.98 mg/L.在20 mg/g TS的蛋白酶、0.2 g/g TS的EDTA-2Na和55℃条件联合作用下,SCOD达到最大值16 878 mg/L,多糖浓度达到最大值2 695.3 mg/L,NH4+-N的浓度达到最大值156.73 mg/L.此外,在不同蛋白酶和EDTA-2Na浓度条件下,剩余污泥水解释放的SCOD符合一级动力学.  相似文献   

11.
重点考察了-种改良型膜生物反应器(A2/O—MBR)的脱氮除磷性能。该工艺主要特点在于对膜池硝化回流液进行了固液分离,并将上清液和浓缩污泥分别回流至缺氧池和厌氧池,这种改进提高了系统对氮、磷的同步去除效率。实验结果表明,在水力停留时间(HRT)为12h,污泥龄(SRT)为30d,混合液回流比为200%的运行条件下,进水COD、NH4+-N、TN和TP平均浓度分别为(225±38)、(24.8±3.9)、(26.7±2.9)和(2.90±0.53)mg/L时,增加膜池硝化回流液固液分离装置前后,系统对COD和NH4+-N的去除都维持在较高水平,而系统对TN和TP的去除效果显著提高,出水TN和TP平均浓度分别由(14.9±3.3)mg/L和(1.95±0.72)mg/L下降到(9.4±1.9)mg/L和(0.91±0.38)mg/L,表明增加膜池硝化回流液固液分离装置显著改善了A2/O-MBR系统的脱氮除磷效果。反硝化除磷活性实验结果进一步表明,改进后系统中反硝化除磷活性占总除磷活性的比例由51.5%上升至61.7%,说明增加膜池硝化回流液固液分离装置强化了系统的反硝化除磷性能。  相似文献   

12.
外循环式UASB反应器处理槟榔废水   总被引:1,自引:0,他引:1  
在中温(35±2℃)条件下,利用外循环式UASB反应器处理中高有机浓度的槟榔加工废水,并着重探讨了水力停留时间(HRT)对厌氧消化的影响。研究表明,当反应器稳定运行,水力停留时间为1 d,进水COD浓度5 000 mg/L左右,容积负荷在2.53-5.25 kg COD/(m3·d)时,COD去除率在38%以上,出水COD〈3 000 mg/L,平均产气率为0.41 m3/kg COD;若水力停留时间延长至4 d,容积负荷为1.26-1.30 kg COD/(m3·d),COD去除率可以达到79%,出水COD〈1 200 mg/L,出水可生化性下降,BOD5/COD平均为0.28,实验取得了良好的处理效果,为利用厌氧技术处理槟榔加工废水提供了设计依据。  相似文献   

13.
以TiO2为催化剂、紫外灯为光源对乳酸进行光催化降解实验,考察了乳酸初始浓度、TiO2用量、反应时间、曝气方式等因素对乳酸降解率的影响,并在此基础上应用正交实验对降解条件进行优化,同时对乳酸的降解机理进行了探索研究。实验结果表明:以300 W紫外汞灯为光源,在乳酸初始浓度为0.5 g/L、TiO2量为0.20 g/L、反应时间120 min、持续通入空气鼓泡的条件下,乳酸降解效果最佳,乳酸降解率为99.9%;降解12 h总有机碳去除率达91.2%。乳酸光催化降解的反应途径为:乳酸脱羧生成乙醇,乙醇被氧化生成乙醛,进而氧化为乙酸,所有的中间产物被继续降解,最终矿化为CO2和H2O等小分子物质。  相似文献   

14.
以某制浆造纸厂生化出水Fenton/絮凝深度处理工艺长期运行数据为依据,系统分析了H2O2、废酸液(FeSO4含量约8%)、硫酸铝、PAM及氧化钙等处理药剂用量与水量、进水负荷和COD去除量之间的关系。结果表明,H2O2、废酸液、硫酸铝、PAM及氧化钙的单位水量平均投加量分别为0.05、2.18、0.07、0.0075和0.27 kg/m3,而去除单位COD的药剂平均消耗量分别为0.20、8.48、0.27、0.029和1.06 kg/(kg COD);H2O2、废酸液、硫酸铝和氧化钙的用量随进水负荷的增大而增加,而PAM随进水负荷的变化较小。H2O2和FeSO4的投加摩尔比(MH2O2/Fe2+)主要集中在1.0-2.0之间,其中在1.0-1.6之间的累积频率达到93%。该工艺的出水COD和SS分别为65-100 mg/L和20-30 mg/L,达到《制浆造纸工业水污染物排放标准》(GB 3544-2008)排放要求。废水深度处理成本约为1.01元/m3,其中药剂费用约0.58元/m3,占56.98%。  相似文献   

15.
对比了不同吸附剂对重金属的吸附效果,同时研究了啤酒酵母的固定化方法、菌体用量对吸附效果的影响、非同定化和固定化啤酒酵母吸附热力学特性。研究结果表明,非固定化死啤酒酵母对Cd^2+的单位菌体吸附量是常用吸附剂活性炭的3倍;由1:3的海藻酸钠与碱处理啤酒酵母(w/w)制得的固定化颗粒吸附效果最好;菌体用量的增加会降低单位菌体对重金属的吸附量;啤酒酵母对重金属的吸附位点有限,Cd^2+的实际最大吸附量为13.95mg/g,Cu^2+为7.67μg/g。非固定化和固定化啤酒酵母对Cu^2+和Cd^2+的等温吸附过程均可用Linear方程、Langmuir方程和Freundlich方程来进行拟合,但非同定化啤酒酵母以Langmuir方程最优,其拟合计算的最大吸附量qmzxCd和qmxxCu分别为13.96mg/g和8.01mg/g;固定化啤酒酵母以Freundlich方程最优,实际最大吸附量Cd为75.41mg/g,Cu为66.58mg/g。  相似文献   

16.
Biomass from a prototype reactor was used to investigate the kinetics of chemoheterotrophic reduction of solutions of ferric ethylenediaminetetraacetic acid (EDTA) and solutions containing the nitrosyl adduct of ferrous EDTA using ethanol as the primary electron donor and carbon source. A series of batch experiments were conducted using biomass extracted from the scrubber solution treatment and regeneration stage of a prototype iron EDTA-based unit process for the absorption of nitric oxide with subsequent biological treatment. Using a linear-sweep voltammetric method for analysis of the ferric EDTA concentration, iron-reducing bacteria were found to behave according to the Monod kinetic model, at initial concentrations up to 2.16 g chemical oxygen demand (COD) as ethanol per liter, with a half-velocity constant of 0.532 g COD as ethanol/L and a maximum specific utilization rate of 0.127 mol/L of ferric ethylenediamine-tetraacetic acid [Fe(III)EDTA]*(g volatile suspended solids [VSS]/L)d(-1). Based on batch analyses, biomass yield and endogenous decay values of iron-reducing bacteria were estimated to be 0.055 g VSS/g COD and 0.017 L/d, respectively. An average of 1.64 times the theoretical (stoichiometric) demand of ethanol was used to complete reduction reactions. Kinetics of the reduction of the nitrosyl adduct of ferrous EDTA are summarized by the following kinetic constants: half-velocity constant (Ks) of 0.39 g COD/L, maximum specific utilization rate (k) of 0.2 mol/L [NO x Fe(II)EDTA(2-)](g VSS/L)d(-1), and inhibition constant (K(I)) of 0.33 g COD/L, as applied to the modified Monod kinetic expression described herein. Based on batch analyses, the biomass yield of nitrosyl-adduct-reducing bacteria was estimated to be 0.259 g VSS/g COD, endogenous decay was experimentally determined to be 0.0569 L/d, and an average of 1.26 times the stoichiometric demand of ethanol was used to complete reduction reactions.  相似文献   

17.
以好氧颗粒污泥接种小试柱形SBR,采用自配无机氨氮废水为进水,在中温(28~30℃)条件下通过逐步提升进水NH4^+-N浓度(100~650mg/L)和缩短水力停留时间(8~4h)快速培养硝化颗粒污泥。实验结果证实,以好氧颗粒污泥接种可以促使硝化颗粒污泥快速形成,36d时粒径〉0.21mm的颗粒污泥占总数的93%,颗粒污泥NH4-N比去除速率为50.53mgNH4^+-N/(gSS·h)。硝化颗粒污泥具有良好的短程硝化性能,亚硝酸盐产生速率和累积率分别保持在3.3kgNO2-N/(m^3·d)和85%以上。反应初期高FA和反应末期高FNA的共同抑制是该研究中实现和维持稳定短程硝化的关键因素。  相似文献   

18.
针对内蒙古农村地区高腐殖酸地下水的处理问题,分别对(pH调节)-PAC强化混凝、高锰酸钾预氧化/混凝、活性炭吸附/混凝、Fenton氧化等技术处理的可行性进行了研究,同时利用三维荧光和高效体积排阻色谱分析处理前后水中有机物的组成变化特征。有机分析结果显示,水中的有机物为腐殖酸类物质,分子量分别为1600和3500,腐殖酸类物质为水中色度的主要贡献者。原水PAC强化混凝、高锰酸钾预氧化/PAC混凝对有机物的去除效果不佳,处理前后水样DOC浓度无明显变化,而pH调节.PAC强化混凝、微米活性炭吸附和Fenton氧化均能有效去除有机物。将原水pH调节至6.5,经300mg/LPAC混凝后出水DOC降至5.99mg/L。活性炭投加量为0.6g/L时,DOC降至7.6mg/L,然后采用60mg/LPAC混凝出去高度分散而不易沉降的小颗粒活性炭。此外,当反应初始pH值为3,过氧化氢投加量为0.5%(v/v),亚铁和双氧水摩尔比为0.05时,出水DOC降至5.6mg/L,氧化后有小分子有机物生成。  相似文献   

19.
为了综合利用废椰壳,进行了废椰壳制备活性炭并负载氧化铜处理活性艳红X-3B废水的研究。采用正交实验法,以COD和色度去除率为目标函数确定了活性炭的最佳制备工艺条件为:磷酸浓度65%(质量百分数),m(磷酸)/m(椰壳)比3∶1,活化时间2.5 h,活化温度500℃。在该活性炭上负载氧化铜处理活性艳红X-3B染料废水,其COD和色度去除率分别为83.70%和99.72%。用扫描电镜(SEM)和X衍射仪(XRD)对裸活性炭和载铜活性炭样品表面形貌和结构进行了表征和分析。通过单因素实验法确定了废水处理的最佳工艺条件为:pH值5,曝气时间4 h和催化剂用量0.55 g,在此条件下,COD和色度去除率分别为86.70%和99.75%,相应的出水指标为75 mg/L和32稀释倍数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号