首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
为了利用廉价材料规模化生产微生物絮凝剂,以味精废水作为廉价培养基质,对酱油曲霉的摇瓶连续培养和发酵罐连续培养进行了研究。摇瓶中以5%的接种量进行连续培养,最适温度在30~33℃之间,每6 h替换一次新鲜废水培养基,5次替换新鲜废水培养基后最大絮凝率仍达到97.8%。在发酵罐扩大连续培养中以5%的接种量接种后经过9 h预培养达到稳定生产絮凝剂后,以4 mL/min的补料流量进行连续培养,生产的絮凝剂产量达到2.392 g/L,且最大絮凝率为98.1%。生产36 h后对发酵系统中菌体进行稀释,使菌体量保持在50~200 g/L之间可持续进行生产。  相似文献   

2.
通过对甘蔗渣进行不同的预处理,确定了提高纤维素酶糖化率和酱油曲霉发酵液絮凝率的方法.利用正交实验对固液比、颗粒粒径、溶剂浓度和预处理时间及其交互作用进行考察,确定较优的工艺方案.结果表明,在相同条件下,碱处理能够有效提高纤维素酶的糖化率,处理后甘蔗渣的酶解液中还原性糖浓度和酱油曲霉发酵液的絮凝率分别为3.46 g/L和...  相似文献   

3.
微生物絮凝剂改善城市污水厂浓缩污泥脱水性能的研究   总被引:7,自引:2,他引:5  
采用酱油曲霉(Aspergillus sojae)产生的微生物絮凝剂(MBF)作为污泥絮凝脱水剂,对城市污水处理厂浓缩污泥进行调理,确定该絮凝剂对浓缩污泥脱水的处理工艺参数为:微生物絮凝液最佳投加体积为6%~8%(体积比),发挥絮凝作用的最适污泥温度为28~32℃,最适pH为6~7。经微生物絮凝剂调理的污泥在3 000 r/min离心9 min,污泥脱水率高达82.7%,滤饼含水率降低至77.3%,污泥脱水后体积减至原来的1/5左右。  相似文献   

4.
从活性污泥中分离提纯出应用于酱油废水处理的微生物絮凝剂,在pH值为6-8,投加量为4 mL/L时,COD去除率可近达70%,与PAC进行复配,能显著提高COD去除率,达80%以上。  相似文献   

5.
青霉菌HHE-P7利用酱油废水产生微生物絮凝剂的研究   总被引:16,自引:0,他引:16  
研究了微生物絮凝剂产生菌HHE-P7在酱油废水中产生微生物絮凝剂的絮凝特性。实验表明,酱油废水由于碳源丰富,是一种良好的培养基。HHE-P7菌最佳培养条件为:COD20000mg/L,K2HP041.0g/L,培养3d。最佳絮凝条件为在1L高岭土水中投加10~15mL微生物絮凝剂(MBF7),pH调至9,则絮凝率为90%以上;微生物絮凝荆在水系中主要起吸附架桥的作用。  相似文献   

6.
研究了微生物絮凝剂产生菌HHE-P7在酱油废水中产生微生物絮凝剂的絮凝特性.实验表明,酱油废水由于碳源丰富,是一种良好的培养基.HHE-P7菌最佳培养条件为:COD 20 000 mg/L,K2HPO41.0 g/L,培养3 d.最佳絮凝条件为在1 L高岭土水中投加10~15 mL微生物絮凝剂(MBF7),pH调至9,则絮凝率为90%以上;微生物絮凝剂在水系中主要起吸附架桥的作用.  相似文献   

7.
研究了培养基成分种类及其用量对菌产微生物絮凝剂的影响。结果表明,较高的C/N比对菌产絮凝剂有利,碳源中的蔗糖是菌株Aeromonassp.N11产絮凝剂的良好碳源,氮源以采用复合氮源为佳。培养基中加入酵母膏有利于絮凝剂的产生。NaCl能够促进所产絮凝剂的絮凝活性,碳源蔗糖和氮源脲对菌产絮凝剂的影响最大。利用正交实验得出产絮凝剂培养基的最佳配比为蔗糖20g/L,酵母膏08g/L,脲05g/L,硫酸胺05g/L,NaCl7g/L。  相似文献   

8.
微生物絮凝剂的应用   总被引:2,自引:1,他引:2  
介绍了微生物絮凝剂的优点及絮凝剂产生菌,并从其絮凝机理与实际应用情况阐述了微生物絮凝剂的未来发展前景。  相似文献   

9.
简单芽孢杆菌产高效微生物絮凝剂   总被引:3,自引:1,他引:2  
通过从绿化植物根际土壤和污水处理厂的活性污泥中分离筛选絮凝剂产生菌,得到一株稳定高效的微生物絮凝剂产生菌PS1,根据形态学特征、生理生化实验以及16S rDNA序列分析将其鉴定为简单芽孢杆菌(Bacillus simplex)。对菌株PS1产生絮凝剂的最佳培养时间、絮凝活性分布以及pH、CaCl2、絮凝剂投量对絮凝效果的影响进行了研究,并考察了其对实际废水的絮凝效果。结果表明,菌株PS1产絮凝剂的最佳培养时间为36 h,产生的絮凝活性物质全部存在于发酵液离心后的上清液中;当pH为7.0~8.5、CaC12投量为0.25~0.35 g/L、发酵液投加量的体积分数为1.5%~2.5%时,菌株PS1发酵液对4 g/L的高岭土悬浊液的絮凝效果最佳,絮凝率达到97%。菌株PS1所产絮凝剂对城市污水、啤酒废水、淀粉废水、医院废水的絮凝率可达90%以上。  相似文献   

10.
微生物细胞的絮凝与微生物絮凝剂   总被引:34,自引:0,他引:34  
比较了普通絮凝剂与微生物絮凝剂在絮凝微生物体方面的机理、性能、应用状况及发展趋 势.重点探讨了微生物絮凝剂的作用机理、开发状况与应用特点及潜力.提出了今后这方面的研究方向.  相似文献   

11.
生物絮凝剂产生菌群发酵特性及动力学   总被引:2,自引:0,他引:2  
从土壤中分离、筛选得到2株具有协同发酵的微生物絮凝剂产生菌。通过单因素实验考察了碳源、氮源、不同C/N等多种发酵条件对复合菌株产絮的影响,并对复合菌株的生长动力学进行了研究。当碳源为蔗糖、氮源为草酸铵、C/N为30∶1,pH=7.0、在30℃,160 r/min的摇床速度下培养24 h,其发酵液对4 g/L的高岭土的悬浊液的絮凝率达到99.3%。根据Logistic方程,得到复合型生物絮凝剂产生菌群的生长动力学模型与实验数据能较好地拟合,基本反映了复合菌群生长的动力学特征。  相似文献   

12.
絮凝剂产生菌B-7的培养条件优化及生长动力学研究   总被引:2,自引:1,他引:2  
从成都市土壤中筛选分离了1株具有稳定高效的微生物絮凝剂产生菌B-7。考察了碳源、氮源、温度、培养时间、pH等多种因素对絮凝剂(MBF-7)絮凝效果的影响。实验结果表明,该菌株产絮凝剂的最佳培养条件为:碳源为淀粉,氮源为硫酸铵,培养时间为72 h,初始pH为7.0,温度为30℃,对0.4%高岭土悬浊液的絮凝率达到91.3...  相似文献   

13.
以三七渣为基质,采用黑曲霉固态发酵产淀粉酶,考察了硫酸铵(氮源)添加量、三七渣粒径、固体培养基含水率、发酵温度、发酵时间、菌悬液接种量等因素对产淀粉酶效果的影响,并采用正交实验对发酵条件进行了优化。单因子实验结果表明,黑曲霉固态发酵三七渣产淀粉酶适宜的硫酸铵添加量为40~60mg/g(以干药渣计),最佳三七渣粒径为100目,最适固体培养基含水率为55%,最佳发酵温度为34℃,最适发酵时间为7d,最佳菌悬液接种量为10%(质量分数)。正交实验多重比较的结果表明,优化的发酵条件为:硫酸铵添加量50mg/g,发酵温度34℃,发酵时间5d,在此发酵条件下,黑曲霉固态发酵三七渣产生的淀粉酶的酶活可达84.15U/g(以湿物料计)。  相似文献   

14.
考察了硫酸铵添加量、磷酸二氢钾添加量、三七渣粒径、培养基含水率等因素对黑曲霉固态发酵三七渣产纤维素酶的影响,并采用正交实验对培养基制备条件进行了优化。研究结果表明,三七渣作为发酵培养基用于生产纤维素酶是可行的;含水率、硫酸铵添加量、磷酸二氢钾添加量以及三者之间的交互作用对实验结果的影响极显著(P 含水率> 磷酸二氢钾添加量> 交互作用;优化的培养基制备条件为:采用过80目的筛三七渣,硫酸铵添加量为40 mg/g干药渣,磷酸二氢钾添加量为10 mg/g干药渣,初始含水率为55%,pH值自然,在此条件下发酵,所产CMC酶活可达73.23 IU/g湿物料。  相似文献   

15.
实验研究了蔗糖为碳源,硝酸钠、脲、蛋白胨、硫酸铵和氯化铵等氮源对NIII2发酵产絮凝剂的影响。结果表明,发酵液起始pH值为7.50,以硝酸钠为氮源,发酵液pH会上升,升至7.60~8.34时,NⅢ2菌株开始大量分泌微生物絮凝剂,发酵72 h,产量可达7.5 g/L,该产量是目前报道的克雷伯氏菌产絮凝剂的最高值。脲为氮源,pH则下降,降至5.04~6.49时,大量分泌絮凝剂,发酵72 h产量达5.2 g/L。蛋白胨、氯化铵和硫酸铵等为氮源时,pH下降十分明显,pH小于3.71时有絮凝剂分泌,发酵72 h产量约2.0 g/L或更小。以硝酸钠和脲为氮源时,发酵液中有黄色物质分泌,该黄色物质出现或黄色逐渐加深,是NIII2菌高产絮凝剂的标志。除硫酸铵外,其他氮源发酵所产絮凝剂为O-糖蛋白。当以硝酸钠、脲、蛋白胨、硫酸铵和氯化铵为氮源时,絮凝剂中蛋白的含量分别为9.55%、33.28%、19.39%、13.81%和15.51%,且蛋白含量越高,絮凝剂活性越大。  相似文献   

16.
利用植物载体丝瓜瓤对元花果曲霉进行固定,并对直接冻黄G进行脱色研究.同时考察了不同因素如菌龄、温度、pH、转速对直接冻黄G的脱色影响.试验结果表明:三龄菌丝脱色效果最佳,该菌在30℃、pH 6.0、90r/min的振荡条件下,经12 h它对直接冻黄G的脱色达到最佳效果.固定化细胞经8次脱色后,脱色率仍达94%以上.因此用丝瓜瓤固定无花果曲霉对处理染料污染废水具有较好的应用前景.  相似文献   

17.
以絮状活性污泥为接种污泥,采用人工配制的模拟生活污水,分别在气提式序批反应器(SBAR)和序批式活性污泥反应器(SBR)中成功地培养出了成熟的好氧颗粒污泥.SBAR和SBR中的好氧颗粒污泥都具有稳定的基本形态结构,其微生物主要由杆菌和球菌组成,对COD的去除率可达到93%左右.对NH+4-N的去除率可达到98%以上.SBAR中好氧颗粒污泥的粒径主要分布、污泥体积指数(SVI)、比耗氧速率(SOUR)、TN去除率和TP去除率分别为0.45~2.00 mm、19.97 mL/g、47.68 g/(kg·h)、82%和65%;而SBR中好氧颗粒污泥的粒径主要分布、SVI、SOUR、TN去除率和TP去除率分别为0.18~1.00 mm、29.12 mL/g、43.21 g/(kg·h)、58%和50%.相对而言,SBAR更有利于好氧颗粒污泥的培养和运行.  相似文献   

18.
由于四氯乙烯 (PCE)的大量使用和不合理的处置使其成为常见的污染物之一。PCE在好氧条件下不发生生物降解 ,只在厌氧条件下通过还原脱氯发生生物降解。本研究主要是对从不同处理厂获得的厌氧污泥进行培养 ,选出合适的厌氧污泥 ,进行降解PCE的厌氧污泥的驯化 ,为以后进行降解PCE的动力学研究和优势菌种的筛选做准备。同时 ,在实验中检测到了三氯乙烯 (TCE) ,表明PCE是通过还原脱氯发生生物降解的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号