首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 311 毫秒
1.
以涂有CeO2-ZrO2固溶体的堇青石蜂窝状陶瓷为载体,用浸渍法制备堇青石蜂窝陶瓷型整体La0.8Sr0.2MnO3催化剂,测试了该催化剂催化燃烧各类VOCs的特性。研究表明,VOCs催化燃烧的难易程度为:含氯烃烷烃酸芳烃酮酯醇醛。La0.8Sr0.2MnO3催化剂对含氧有机化合物具有较好的催化活性,完全燃烧温度均在280℃之内。通过关联VOCs的理化性质,发现VOCs在La0.8Sr0.2MnO3催化剂上的反应活性与VOCs分子中最弱C—H键键能和VOCs分子极性密切联系。  相似文献   

2.
采用共沉淀法制备钙钛矿型La0.8 Sr0.2 MnO3催化剂,以甲苯的催化燃烧为模型反应,考察了SO2对La0.8 Sr0.2 MnO3催化剂的毒性效应.通过X射线衍射(XRD)光谱、比表面积(BET)和X射线电子能谱(XPS)表征硫中毒前后催化剂的结构和理化性质.结果表明,SO2在La0.8 Sr0.2 MnO3表...  相似文献   

3.
微波催化燃烧技术将微波辐照与吸波型催化剂相结合,可用于对挥发性有机化合物(VOCs)进行催化燃烧处置.研制了 Pt/CuMnCeOx/堇青石和Pt/CuMnCeOx/纳米陶瓷整体式蜂窝状催化剂,并开发了微波催化燃烧VOCs的装置,将其应用于印刷包装行业的VOCs治理.通过操作条件的优化,考察了微波催化燃烧技术对VOCs...  相似文献   

4.
以Ce-Zr-Mn三组分储氧材料(OSM)和Y2 O3、ZrO2稳定的γ-Al2 O3 (YSZ-Al2 O3)为载体,制得Co基催化剂,再以不同比例的Co/OSM和Co/YSZ- Al2 O3制得堇青石为基体的Co基整体式催化剂.上述催化剂活性用甲烷催化燃烧性能进行评估.结果表明,甲烷燃烧催化活性顺序为Co/OSM≈...  相似文献   

5.
采用共混热解法制备系列Ce-Sn-W-Ox复合氧化物,用于NH3选择性催化还原NO。通过正交实验优化CeSn-W-Ox配方,采用环境扫描电镜(ESEM)、X-射线衍射仪(XRD)等表征分析催化剂的微观形貌和固相结构,确立Ce-Sn-WOx最佳配比及结构形貌。结果表明,以粒度为5~8 mm的堇青石瓷片担载分散Ce-Sn-W-Ox,进行NH3-SCR脱除NO,当Ce/Sn/W元素摩尔比为1∶0.8∶0.6时,Ce Sn0.8W0.6Ox/堇青石NH3-SCR脱除NO效果最好。当空速为7 200 h-1,催化剂在252~426℃内脱除NO效率均大于94%。重点考察了反应空速(GHSV)、水蒸气(H2O)、SO2等对Ce Sn0.8W0.6Ox/堇青石NH3-SCR脱除NO活性的影响。研究表明,空速低于10 000 h-1时,催化剂脱硝活性受空速影响小;单独通入5%H2O对催化剂脱硝活性基本没有影响;单独通入429 mg/m3SO2导致催化剂活性略有降低;同时通入429 mg/m3SO2和5%H2O,催化剂脱硝活性下降至85.33%,除去SO2和H2O后,催化剂活性又能明显回升。  相似文献   

6.
催化剂比表面积的增加可以为活性组分颗粒提供大量的附着位点,从而显著提高其催化活性.使用2.5 mol,L-1的NaOH溶液对蜂窝状堇青石进行碱蚀以增加其比表面积,采用等体积浸渍法制备了CuMnCeO/碱蚀堇青石催化剂,考察了碱蚀对催化剂微波催化燃烧甲苯性能的影响,并对碱蚀前后催化剂进行了BET、SEM、TEM和XRD表...  相似文献   

7.
以堇青石蜂窝陶瓷为基体的Pd/Al_2O_3催化剂,通过负载不同金属(M:Ce、Ni、Ba、Mg、Fe、La和Mn)氧化物进行改性,研究煤矿乏风中甲烷的催化氧化反应机理。结果表明,不同金属氧化物负载下M-Pd/Al_2O_3晶相存在明显差异,Ni和Mg的负载阻止了Al_2O_3高温下向稳定的α-Al_2O_3相态转变,Ni和Mg添加与Al_2O_3形成NiAl_2O_4和MgAl_2O_4能有效地提高催化剂的低温催化活性和高温热稳定性;PdO_2比PdO催化活性更高,Ni和Mg的负载能维持PdO_2相态存在,减弱PdO_2烧结发生和促进Pd的均匀分布;Ni、Mg氧化物改性Pd/Al_2O_3催化剂催化氧化煤矿乏风,具有良好的应用前景。  相似文献   

8.
TFJF型催化剂治理漆包线机烘炉排气   总被引:2,自引:0,他引:2  
报道一种天然沸石/堇青石蜂窝体(TFJF)型催化剂在卧式漆包机烘炉上催化燃烧治理排气的具体应用情况。结果表明,该催化剂在处理量为80~150克溶剂/升催化剂·小时的情况下,活性好,净化率可达97%,对800℃高温冲击的耐受性也好,是一种优良的燃烧催化剂,值得推广应用。  相似文献   

9.
本文讨论了目前有机污染物脱除的各种方法 ,并将催化活性组分担载在经Al2 O3 修饰的整体蜂窝陶瓷支撑体上 ,制备了催化氧化法脱除低浓度有机污染物 (VOCs)ZDL - 1催化剂 ,在固定床反应器进行了连续工艺条件实验。结果表明 ,ZDL 1催化剂具有低温启动性能好、脱除VOCs的效率高、稳定性好的突出优点 ,且床层压降低。为ZDL 1催化剂应用于不同过程脱除VOCs提供基础  相似文献   

10.
采用柠檬酸络合燃烧法合成制备了La1-xKxCo0.5Mn0.5O3(x为K+取代量,x=0、0.1、0.2、0.3、0.4、0.5)系列钙钛矿型复合金属氧化物催化剂,以X射线衍射、红外光谱和比表面积等手段对该催化剂进行表征,以常压固定床微型反应器程序升温氧化还原反应技术评价该催化剂同时去除模拟柴油机尾气中炭黑颗粒(表征柴油机尾气中的碳颗粒)和NOX的催化性能.结果表明,K+部分取代LaCo0.5Mn0.5O3中的La3+后,催化剂催化性能得到明显改善,炭黑颗粒的起燃温度(Tig)、峰值温度(Tm)和燃尽温度(Tf)均降低,NOX的转化率提高,最高为16.6%;La0.6K0.4Co0.5Mn0.5O3具有最佳的催化性能,炭黑颗粒的Tig、Tm和Tf分别为305、350、379 ℃,炭黑颗粒燃烧产物中CO2的体积分数为98.8%,NOX转化率为15.5%.  相似文献   

11.
Wang CH  Chen CL  Weng HS 《Chemosphere》2004,57(9):1131-1138
La(1-x)Sr(x)FeO(3) (x=0.0-1.0) perovskites were prepared and tested for the combustion of methane. X-ray diffraction (XRD) patterns revealed the presence of a single perovskite structure for substitutions 0x0.3, however Fe(2)O(3), SrCO(3) and SrFeO(3) phases were observed for substitutions x>0.3. The results of activity test indicate that with La(1-x)Sr(x)FeO(3) as the catalyst, the combustion of methane can take place at low temperatures around 400 degrees C. Partial substitution of La with Sr increases the activity and an optimal substitution fraction (x=0.5) exists in the La(1-x)Sr(x)FeO(3) catalysts. Catalyst activity can be well correlated to the product of the specific surface area and atomic ratio of Fe to La+Sr on the catalyst surface. Experimental results of O(2)-TPD and CH(4)-TPD in the range of 350-500 degrees C indicate that the amount of oxygen desorbed from the La(1-x)Sr(x)FeO(3) catalysts is far larger than that of methane. Therefore, it can be proposed that the catalytic oxidation of CH(4) over these catalysts proceeds with the surface reaction between CH(4) in the gas phase and the adsorbed O(2). Addition of water vapor or CO(2) to the feed inhibited catalyst activity, but the inhibition was reversible and became negligible at high reaction temperature.  相似文献   

12.
为实现对柴油机碳烟和NOx的低温同步去除,采用柠檬酸络合法制备分子筛负载钙钛矿型金属复合氧化物催化剂,应用x衍射分析仪(XRD)和电镜扫描仪(SEM)对催化剂性能进行表征,并在微型固定床反应器中对催化剂低温去除碳烟和NOx进行活性评价。利用程序升温反应(TPR)技术,进行催化剂活性评价、柴油机负荷和排放等特性实验。结果表明,A位用适量Ce部分取代La,B位用适量cu部分取代Mn,可使碳颗粒燃烧温度降低,CO2选择性好,NOx转化率升高。La0.4 Ce0.6 Cu0.2 Mn0.8O3/HZSM-5催化剂的最大NOx转化率为81.0%,Ti、Tm和Tf分别为250、350和475℃,表明该催化剂具有较好的催化活性,能在低温条件下去除碳烟和NOx。  相似文献   

13.
Manganese acetate (MnAc) and manganese nitrate (MnN) were employed as precursors for the preparation of MnAc)/TiO2, Mn (N)/TiO2, Mn(Ac)-Ce/TiO2, and Mn(N)-Ce/TiO2 by impregnation. These complexes were used as catalysts in the low-temperature selective catalytic reduction of NO with NH3. The influence of manganese precursors on catalyst characteristics, the reduction activity, and the stability of the catalysts to poisoning by H2O and SO2 were studied. Experiments showed that Mn(N) produced MnO2 with large grain sizes in Mn(N)/TiO2 catalyst. On the contrary, Mn(Ac) led to highly dispersed and amorphous Mn2O3 in Mn (Ac)/TiO2 catalyst, which had better catalytic activity and stability to SO2 at low temperatures. The doping of cerium reduced the differences in catalytic performance between the catalysts derived from different Mn precursors.  相似文献   

14.
Lee JY  Kim SB  Hong SC 《Chemosphere》2003,50(8):1115-1122
Natural manganese ore (NMO) catalysts were characterized and tested in the selective catalytic oxidation of ammonia to nitrogen oxides under dilute conditions. Also, the oxidation of ammonia (NH(3)) was carried out using pure MnO(2), Mn(2)O(3) for comparing with the activity. It is found that the activity of NMO was similar to that of MnO(2) at low temperature below 150 degrees C but above this temperature, the activity of these catalysts showed the difference. In the course of NH(3) oxidation, N(2), NO, N(2)O and H(2)O were produced. But the quantity of NO(2) produced in this experiment was negligible. At temperature below 250 degrees C, selectivity into N(2) from NH(3) oxidation was in the order, NMO > MnO(2) > Mn(2)O(3). This is the reverse of activity of these manganese oxides. Also the characterization of NH(3) oxidation was proposed and supported by the effect of space velocity, inlet O(2) and NH(3) concentration. The increase of space velocity remarkably influenced not only the conversion but also selectivity into N(2). The higher the reaction temperature was, the higher the effect of inlet O(2) and NH(3) concentration on the reaction rate was. By introducing NO during NH(3) oxidation reaction, the possibility of NMO as selective catalytic reduction catalyst at low temperature was studied and showed positive results.  相似文献   

15.
With the advances made in the past decade, catalytic incineration of volatile organic compounds (VOCs) has become the technology of choice in a wide range of pollution abatement strategies. In this study, a test was undertaken for the catalytic incineration, over a chromium oxide (Cr2O3) catalyst, of n-hexane, benzene, and an emission air/vapor mixture collected from an oil/water separator of a refinery. Reactions were carried out by controlling the feed stream to constant VOC concentrations and temperatures, in the ranges of 1300-14,700 mg/m3 and 240-400 degrees C, respectively. The destruction efficiency for each of the three VOCs as a function of influent gas temperature and empty bed gas residence time was obtained. Results indicate that n-hexane and the oil vapor with a composition of straight- and branch-chain aliphatic hydrocarbons exhibited similar catalytic incineration effects, while benzene required a higher incineration temperature or longer gas retention time to achieve comparable results. In the range of the VOC concentrations studied, at a given gas residence time, increasing the operating temperature of the catalyst bed increased the destruction efficiency. However, the much higher temperatures required for a destruction efficiency of over 99% may be not cost-effective and are not suggested. A first-order kinetics with respect to VOC concentration and an Arrhenius temperature dependence of the kinetic constant appeared to be an adequate representation for the catalytic oxidation of these volatile organics. Activation energy and kinetic constants were estimated for each of the VOCs. Low-temperature destruction of the target volatile organics could be achieved by using the Cr2O3 catalyst.  相似文献   

16.
利用浸渍法制备了Cu—Mn复合氧化物催化剂和加入不同稀土含量的Cu—Mn复合氧化物催化剂,通过实验优选出加入稀土催化剂中稀土含量的最优配比,以气相色谱为检测手段,考察了加入稀土和不加稀土催化剂的催化燃烧性能,结果表明,加入稀土的催化剂T99(催化处理效率达到99%时的温度)比不加稀土的催化剂降低30~40℃,具有更好的低温活性,且对多种VOCs均能降低反应温度。  相似文献   

17.
The catalytic incineration of dimethyl sulfide and dimethyl disulfide [(CH3)2S and (CH3)2S2] over an MnO/Fe2O3 catalyst was carried out in a bench-scale catalytic incinerator. Three kinetic models (i.e., the power-rate law, the Mars and Van Krevelen model, and the Langmuir-Hinshelwood model) were used to analyze the results. A differential reactor design was used for best fit of kinetic models in this study. The results show that the Langmuir-Hinshelwood model may be feasible to describe the catalytic incineration of (CH3)2S and (CH3)2S2. This suggests that the chemical adsorption of O2 molecules is important in this incineration.  相似文献   

18.
Removal of ammonia solutions used in catalytic wet oxidation processes   总被引:9,自引:0,他引:9  
Hung CM  Lou JC  Lin CH 《Chemosphere》2003,52(6):989-995
Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.  相似文献   

19.
ABSTRACT

With the advances made in the past decade, catalytic incineration of volatile organic compounds (VOCs) has become the technology of choice in a wide range of pollution abatement strategies. In this study, a test was undertaken for the catalytic incineration, over a chromium oxide (Cr2O3) catalyst, of n-hexane, benzene, and an emission air/vapor mixture collected from an oil/water separator of a refinery. Reactions were carried out by controlling the feed stream to constant VOC concentrations and temperatures, in the ranges of 1300–14,700 mg/m3 and 240–400 ° C, respectively. The destruction efficiency for each of the three VOCs as a function of influent gas temperature and empty bed gas residence time was obtained.

Results indicate that n-hexane and the oil vapor with a composition of straight- and branch-chain aliphatic hydrocarbons exhibited similar catalytic incineration effects, while benzene required a higher incineration temperature or longer gas retention time to achieve comparable results.

In the range of the VOC concentrations studied, at a given gas residence time, increasing the operating temperature of the catalyst bed increased the destruction efficiency. However, the much higher temperatures required for a destruction efficiency of over 99% may be not cost-effective and are not suggested. A first-order kinetics with respect to VOC concentration and an Arrhenius temperature dependence of the kinetic constant appeared to be an adequate representation for the catalytic oxidation of these volatile organics. Activation energy and kinetic constants were estimated for each of the VOCs. Low-temperature destruction of the target volatile organics could be achieved by using the Cr2O3 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号