首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The United States Environmental Protection Agency/Environmental Response Team (US EPA/ERT), in collaboration with St. John's College, Dr. B. R. Ambedkar University, Agra, India, is conducting a study to determine Hg vapor emission rates resulting from broken compact fluorescent lamps (CFLs) in a residential setting. The overall objectives of the study are to determine Hg vapor emission data and provide homeowners with cleanup procedures and disposal options for broken CFLs. Most of the currently available CFLs in the US market are manufactured in China for US companies. Several different types of CFLs were purchased from local stores and their Hg content was determined. Based on previous studies, such as the 2011 study by Singhvi and colleagues, five popular spiral CFLs were selected for emission studies in an acrylic chamber. This study found that Hg vapor emissions from CFLs may be significantly greater than those from beads of liquid Hg with weights comparable to the Hg content of the CFLs. The average 24-hour Hg loss into the atmosphere from CFLs broken on a plastic surface ranged from 0.6% to 22% of the bulb content, while that for CFLs broken on carpet ranged from 2.6% to 28%. Projections for a 12 foot × 9.33 foot × 8 foot (25.4 m3) room based on the chamber measurements in this study indicate that CFL breakage in some household settings may produce 24-hour Hg concentrations above the 2000 Agency for Toxic Substances and Disease Registry (ATSDR) minimum risk level (MRL) of 0.2 μg/m3, for typical air exchange rates. This study also indicates that Hg emission may not be proportional to exposed surface area based on experiments using liquid Hg with different surface areas.  相似文献   

2.
Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg(o)) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg(o) to the air if it is initially present or formed by chemical reduction of Hg(II) to Hg(o) within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (approximately 100 mg/hr) and from dumpsters in the field (approximately 30 mg/hr for 1000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg(o) signals, indicating that much of the Hg was already present in a metallic (Hg(o)) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(o), the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg(o) at 10 to >100 microg/hr and continued to act as near constant sources for several days.  相似文献   

3.
Abstract

Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg0) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg0 to the air if it is initially present or formed by chemical reduction of HgII to Hg0 within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (~100 mg/hr) and from dumpsters in the field (~30 mg/hr for 1,000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg0 signals, indicating that much of the Hg was already present in a metallic (Hg0) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg0 at 10 to >100 μg/hr and continued to act as near constant sources for several days.  相似文献   

4.
Ground discarded tires remove naphthalene, toluene, and mercury from water   总被引:2,自引:0,他引:2  
Gunasekara AS  Donovan JA  Xing B 《Chemosphere》2000,41(8):1155-1160
Ground discarded tires adsorb naphthalene, toluene, and mercury ions (Hg2+) from aqueous solutions. Their sorption properties and kinetics were determined by batch equilibration techniques at 20 degrees C. The isotherms were linear for naphthalene and toluene and their sorption coefficients were about 1340 and 255 (ml/g), respectively. Sorption of the organic compounds by the ground rubber particles was relatively fast (within 30 min). However, the mercury isotherms were non-linear, and its sorption was slow as compared to the sorption of the organics. The rubber particles had a strong affinity for Hg2+. These results show that ground discarded tires are effective in removing organic compounds and Hg2+ from wastewater and other contaminated environments. In addition it would be a useful, environmentally friendly use of discarded tires (one tire per year per capita is discarded in the United States).  相似文献   

5.
Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg(O)) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from approximately 1-10 ng m(-2) hr(-1) over aged landfill cover, from approximately 8-20 mg/hr from LFG flares (LFG included Hg(O) at microg/m3 concentrations), and from approximately 200-400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(O), the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10-50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.  相似文献   

6.
The utilization of coal gangue in power plants has become a new anthropogenic discharge source of mercury and attracted much concern in China. It is crucial to obtain the information about the mercury release during thermal treatment of coal gangue. In this study, the mercury release behavior of two coal gangues selected from two power plants were studied under different thermal treatment conditions of heating rate, residence time, and atmosphere. The results of mercury release profile show that the specified release temperature ranges for the different modes of occurrence of Hg are scarcely affected by the heating rate of 10, 20, and 40 °C/min. A higher heating rate could promote the Hg release to some extent. The mercury release ratio gradually increases with the extension of residence time for both coal gangues. The oxidizing environment has a positive effect on mercury release < 600 °C and has a minor effect > 600 °C. Mercury in coal gangue is more volatile than coal gangue matrix and the mercury in GD coal gangue is more easily released out than that in ED coal gangue.  相似文献   

7.
A J Renneberg  M J Dudas 《Chemosphere》2001,45(6-7):1103-1109
There are many industrial sites, such as gas processing plants, that are contaminated with both mercury and hydrocarbons. These sites tend to be localized but can have very high concentrations of mercury in the soil and heterogeneous distribution of hydrocarbons. The original form of mercury in many cases was elemental mercury from broken manometers. Over time the mercury has become redistributed within soil and has undergone chemical transformations into new forms. The forms of mercury will govern the chemical behavior and the availability of the mercury to biological receptors. The availability of the mercury is important as it will govern the risk associated with the contaminated soil and will also determine the effectiveness of any attempts at remediation. In the present study a chemical extraction protocol was used to determine the forms of mercury in soil originally contaminated by spillage of elemental mercury and petroleum hydrocarbons. Chemical extractions have been used in the past to determine the forms of mercury in uncontaminated soils and several researchers have used them to study contaminated soils. However, to date, no researchers have studied the forms of mercury in soils following years of weathering of elemental mercury after a spill. This study shows that decades after the original spill the elemental mercury has transformed and is dominantly (up to 85%) associated with soil organic matter, and to a lesser extent the mineral fraction of soil.  相似文献   

8.
Incident radiation has been reported to facilitate mercury release from soils. In this study the influence of light on mercury emissions from substrates amended with pure synthetic mercury species, and from naturally and anthropogenically mercury-enriched substrates were investigated using laboratory experiments and in situ flux measurements. Light-enhanced emissions were found to occur from substrates amended with HgS, and from elemental mercury (Hg0) and HgCl2 amended iron oxide and organic containing substrates. The magnitude of light-enhanced emissions for natural substrates ranged from 1.5 to 116 times that occurring in the dark at the same substrate temperature. Substrates containing corderoite, metacinnabar and “matrix bound mercury” (that bound to organic or inorganic phases) exhibited a higher degree of light-enhanced emissions relative to that containing predominantly cinnabar. Calculated activation energies for both laboratory and field data indicate that photo-reduction is a process associated with the light-enhanced emissions. Activation energies, derived using in situ mercury fluxes and soil temperatures, indicated that photo-reduction was a dominant process facilitating release of Hg from substrates with sunrise. Activation energies, calculated using daytime data, were less than those calculated for sunrise. This is hypothesized to be due to a pool of Hg0 being developed with photo-reduction at first light that is released as soil temperatures and convective heat transfer increase during the day. This study demonstrated that light energy is the more dominant process controlling mercury emissions from naturally enriched substrates than soil temperature.  相似文献   

9.
The characteristics of petroleum-contaminated sediment (PCS) have been evaluated to assess whether the practice of its beneficial reuse as a sole or supplemental energy source is sustainable relative to other sediment remediation options such as monitored natural recovery (MNR), capping, or off-site disposal. Some of these remediation options for PCS are energy-intensive and/or require land utilization. The energy and compositional analysis results indicate a low carbon content (15–17%(wt)) and corresponding low energy values of 5,200 kJ/kg (2,200 Btu/lb) to 5,600 kJ/kg (2,400 Btu/lb). However, given other decision-making criteria, the sediment may contain enough value to be added as a supplemental fuel given that it is normally considered a waste product and is readily available.

The thermogravimetric profiles obtained under both combustion and pyrolytic conditions showed that the sulfur contents were comparable to typical low sulfur bituminous or lignite coals found in the United States, and most of the volatiles could be vaporized below 750°C. The heavy metal concentrations determined before and after combustion of the PCS indicated that further engineering controls may be required for mercury, arsenic, and lead. Due to the potential for reduction of public health and environmental threats, potential economic savings, and conservation of natural resources (petroleum and land), removal of PCS by dredging and beneficial reuse as a supplemental fuel clearly has merit to be considered as a sustainable remediation option.

Implications: This study will provide a logical evaluation process to determine whether petroleum-contaminated sediment can be reused as an energy source. The energy and emissions values were determined and evaluated whether the sediment could be combusted for viable and sustainable use, considering several factors pertinent to evaluate in the remediation decision process. Various analysis methods were employed to determine elemental compositions, heating values, thermal and emission characteristics. This evaluation process may be used as a general methodology for the determination of petroleum-contaminated sediment as a supplemental fuel that may have merit to be considered as a sustainable remediation option.  相似文献   

10.
This paper presents results of a survey of mercury concentrations in coal, ash, water, fly ash, and flue gas discharges from a 5.5 × 106 Ib/hr steam generator serving a 775 MW (net) turbine-generator set. Representative composite or grab samples were obtained for inlet coal and outlet ash and water. Stack samples were obtained for fly ash and mercury vapor emissions while the unit was operated at 660 MW (net) (85% of full load). Samples were analyzed by anodic stripping voltammetry, plasma emission spectroscopy, and neutron activation analysis to determine mercury concentration entering the furnace in the coal and leaving the furnace in the flue gas, fly ash, bottom and hopper ash, and water. Method inter-comparisons are discussed. A material balance for mercury has been calculated from fuel, ash, and stack gas flow rates. About 90% of the mercury in the coal is released and appears as vapor discharged in the stack gas while 10% remains in the residual ash. For a 700 MW (net) unit, about 5 lb/day of mercury vapor is released to the atmosphere.  相似文献   

11.
Attaining the National Ambient Air Quality Standard (NAAQS) for ozone (O3) could cost billions of dollars nationwide. Attainment of the NAAQS is judged on O3 measurements made by the Federal Reference Method (FRM), ethylene chemiluminescence, or a Federal Equivalent Method (FEM), predominantly ultraviolet (UV) absorption. Starting in the 1980s, FRM monitors were replaced by FEMs so that today virtually all monitoring in the United States uses the UV methodology. This report summarizes a laboratory and collocated ambient air monitoring study of interferences in O3 monitors. Potential interferences examined in the laboratory included water vapor, mercury, o-nitrophenol, naphthalene, p-tolualdehyde, and mixed reaction products from smog chamber simulations of urban atmospheric photochemistry. UV absorption O3 monitors modified for humidity equilibration were also collocated with UV FEM O3 monitors at six sites in Houston, TX, during the 2007 summer O3 season. The results suggest that humidity and interfering species can positively bias (overestimate) O3 measured by FEM monitors used to determine compliance with the O3 standards. The results also suggest that humidity equilibration can mitigate this bias.  相似文献   

12.
In this investigation, the concentrations of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particulate bound mercury (PBM) in ambient air were measured at the Hung Kuang (traffic) sampling site during September 27 to October 6, 2014. An ambient air mercury collection system (AAMCS) was utilized to measure simultaneously PBM, GEM, and RGM concentrations in ambient air. The results thus obtained demonstrate that the mean concentrations of PBM, GEM, and RGM were 38.57 ± 11.4 (pg/m3), 17.67 ± 5.56 (ng/m3) and 10.78 ± 2.8 (pg/m3), respectively, at this traffic-sampling site. The mean GEM/PBM and GEM/RGM concentration ratios were 458 and 1639, respectively. The results obtained herein demonstrate that AAMCS can be utilized to collect three phases of mercury simultaneously. The mean PBM, GEM, and RGM concentrations herein were compared with others found in Asia, America, Europe and Antarctica. The mean PBM, GEM, and RGM concentrations were found to be lowest in Asia and Antarctica. The mean PBM concentration in Europe was approximately eight times that in this investigation. The mean GEM and RGM concentrations in this study were 1.21 and 170 times those found in the United States.  相似文献   

13.
Abstract

Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg0) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from ~1–10 ng m?2 hr?1 over aged landfill cover, from ~8–20 mg/hr from LFG flares (LFG included Hg0 at μg/m3 concentrations), and from ~200–400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10–50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.  相似文献   

14.
Mercury is a physiological toxin released by spent fluorescent lamps (SFLs) and is considered a serious pollutant. As the world’s largest producer of fluorescent lamps, China suffers from SFL pollution because of inefficient recycling and management of SFLs. Drawing upon the most successful practices worldwide, this paper suggests the recycling of SFLs on the basis of the extended producer responsibility (EPR) system in China. Manufacturers and importers are the main parties responsible for the take-back, recycling, and disposal of SFLs in the EPR system. In view of the situation in China and to address the objectives of the EPR system, this paper recommends the implementation of a third-party take-back mode for small- and medium-scale enterprises and of a take-back mode for large enterprises to be carried out by original equipment manufacturers. This paper suggests an extended responsibility fund to finance and support the SFL recycling system and discusses in detail the different recycling network systems and fund flows of the two take-back modes. By conducting a case study, the authors determine that the subsidy rate for SFLs that a recycling company can obtain from the extended responsibility fund for recycling and disposing of lamps can be set at $1.35/kg. The authors also predict the levy level that fluorescent lamp manufacturers must submit.
Implications:For policymakers, a proper and effective way to manage and recycle spent fluorescent lamps (SFLs) is necessary. The recommended system and the predicted number values of the subsidy rate and levy level can be the basis in practice. For people, the proper management measures will reduce exposure from SFLs effectively, especially the risk of exposure to mercury. For society, the measures can help increase resource utilization rate. For manufacturers, an effective extended responsibility fund will motivate them to improve processing technique and green design.  相似文献   

15.
Reduction of divalent mercury and subsequent emission to the atmosphere has been identified as loss process from surface snow, but its mechanism and importance are still unclear. The amount of mercury that stays in the snow pack until spring is of significance, because during snow melt it may be released to the aquatic environment and enter the food web. Better knowledge of its fate in snow might further assist the interpretation of ice core data as paleo-archive. Experiments were performed under well-controlled laboratory conditions in a coated wall flow tube at atmospheric pressure and irradiated with light between 300 nm and 420 nm. Our results show that the presence of benzophenone and of oxalic acid significantly enhances the release of mercury from the ice film during irradiation, whereas humic acid is less potent to promote the reduction. Further it was found that oxygen or chloride, and acidic conditions lowered the photolytically induced mercury release in the presence of benzophenone, while the release got larger with increasing temperatures.  相似文献   

16.
Gaseous elemental mercury (GEM) concentration measurements were made during the Alert 2000 campaign in Alert, Nunavut, Canada, between February and May 2000. GEM exhibits dramatic mercury depletion events (MDE) concurrently with ozone in the troposphere during the Arctic springtime. Using a cold regions pyrolysis unit, it was confirmed that GEM is converted to more reactive mercury species during the MDEs. It was determined that on average 48% of this converted GEM was recovered through pyrolysis suggesting that the remaining converted GEM is deposited on the snow surfaces. Samples collected during this campaign showed an approximate 20 fold increase in mercury concentrations in the snow from the dark to light periods. Vertical gradient air profiling experiments were conducted. In the non-depletion periods GEM was found to be invariant in the air column between surface and 1–2 m heights. During a depletion period, GEM was found to be invariant in the air column except at the surface where a noticeable increase in the GEM concentration was observed. Concurrent ozone concentration profiles showed a small gradient in the air column but a sharp decrease in ozone concentration at the surface. Other profile studies showed a 41% average GEM concentration difference between the interstitial air in the snow pack and ∼2 m above the surface suggesting that GEM is emitted from the snow pack. Further profile studies showed that during MDEs surface level GEM exhibits spikes of mercury concentrations that were over double the ambient GEM concentrations. It is thought that the solar radiation may reduce reactive mercury that is deposited on the snow surface during a MDE back to its elemental form which is then increasingly released from the snow pack as the temperature increases during the day. This is observed when wind speeds are very low.  相似文献   

17.
The relative accuracy (RA) of a newly developed mercury continuous emissions monitor, based on X-ray fluorescence, was determined by comparing analysis results at coal-fired plants with two certified reference methods (American Society for Testing and Materials [ASTM] Method D6784-02 and U.S. Environment Protection Agency [EPA] Method 29). During the first determination, the monitor had an RA of 25% compared with ASTM Method D6784-02 (Ontario Hydro Method). However, the Ontario Hydro Method performed poorly, because the mercury concentrations were near the detection limit of the reference method. The mercury in this exhaust stream was primarily elemental. The second test was performed at a U.S. Army boiler against EPA Reference Method 29. Mercury and arsenic were spiked because of expected low mercury concentrations. The monitor had an RA of 16% for arsenic and 17% for mercury, meeting RA requirements of EPA Performance Specification 12a. The results suggest that the sampling stream contained significant percentages of both elemental and oxidized mercury. The monitor was successful at measuring total mercury in particulate and vapor forms.  相似文献   

18.
In the past, human activities often resulted in mercury releases to the biosphere with little consideration of undesirable consequences for the health of humans and wildlife. This paper outlines the pathways through which humans and wildlife are exposed to mercury. Fish consumption is the major route of exposure to methylmercury. Humans can also receive toxic doses of mercury through inhalation of elevated concentrations of gaseous elemental mercury. We propose that any effective strategy for reducing mercury exposures requires an examination of the complete life cycle of mercury. This paper examines the life cycle of mercury from a global perspective and then identifies several approaches to measuring the benefits of reducing mercury exposure, policy options for reducing Hg emissions, possible exposure reduction mechanisms, and issues associated with mercury risk assessment and communication for different populations.  相似文献   

19.
Although vapor monitoring is generally a component of remedial action activities, most sites do not have routine gaseous releases or vapor clouds erupting from the soil during implementation of the cleanup process (or during cleanup of the site). At the North Carolina State University Lot 86 National Priorities List Site, over 8410 m3 (11,000 yd3) of chemical waste was disposed at the Site, including organic solvents and shock-sensitive and air- and water-reactive compounds. During the Remedial Action, it was imperative to protect site workers and off-site populations from potential inhalation exposures. Engineering controls were incorporated into the shallow soil mixing process to limit the release of gaseous compounds. To quantify potential exposures to on-site and off-site receptors, modeling was conducted to evaluate potential exposure routes and migration pathways. To demonstrate acceptable levels of airborne constituents, a multifaceted air sampling and monitoring program was implemented. To ensure that potential exposures could be quantified, passive dosimeters, continuous real-time monitoring, time-weighted whole air sampling, and grab samples of vapor clouds were all critical components of the air monitoring program. After the successful completion of the Remedial Action, the pre-Resource Conservation and Recovery Act (RCRA) chemical waste generated from the University's educational and research laboratories was entirely encapsulated and neither on-site workers nor off-site populations were exposed to analyzed compounds above any health-based action level (i.e., 15-min short-term exposure limit [STEL], 8-hr threshold limit value, or time-weighted average permissible exposure limit).  相似文献   

20.
The long-term stability of Hg in coal combustion by-products (CCBs) was evaluated at ambient and near-ambient temperatures. Six CCB samples with atypically high levels of total Hg were selected for study assuming a greater potential for release of measurable amounts of Hg vapor. The samples selected included two fly ash samples from U.S. eastern bituminous coal, two fly ash samples from South African low-rank coal, one fly ash from Powder River Basin (PRB) subbituminous coal blended with petroleum coke, and one PRB subbituminous coal fly ash incorporated with flue gas desulfurization material. Air scrubbed of Hg was passed through compacted 100-g aliquots of each sample at 1 mL/min and vented to a gold-coated quartz trap to collect released Hg vapor. The samples were maintained at ambient and near-ambient (37 degrees C) temperatures. All samples released low-picogram levels of Hg after 90 days. No pattern was evident to link the total Hg content to the rate of release of Hg vapor. An average of 0.030 pg Hg/g CCB/day was released from the samples, which equates to 2.2 x 10(-8) lb Hg/ton CCB/year. If this were applied to a coal-fired power plant production of 200,000 tons of fly ash per year, there would be a maximum potential release of 0.0044 lb, or 2.00 g, of Hg per year. Experiments are continuing to determine long-term vapor release of Hg from CCBs. All samples have been set up in duplicate at ambient temperature with an improved apparatus to reevaluate results reported in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号