首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Active sediment caps are being considered for addressing contaminated sediment areas in surface‐water bodies. A demonstration of an active cap designed to reduce advective transport of contaminants using AquaBlok® (active cap material) was initiated in a small study area of the Anacostia River in Washington, D.C. The cap remained physically stable, demonstrated the ability to divert groundwater flow, and was recolonized with native organisms after 30 months of monitoring following cap placement. However, the long‐term performance of active caps associated with harsh environmental conditions, hydrogeological settings, and subsurface gas production needs to be further evaluated. © 2008 Wiley Periodicals, Inc.  相似文献   

2.
Nonaqueous‐phase liquid (NAPL) migration from sediments to the surface of water bodies has been reported frequently at sites with sediments contaminated with NAPLs, such as coal tar and creosote. Commonly, transport of NAPL from sediment is facilitated by gas ebullition caused by anaerobic biodegradation of organic matter in the sediment. A remedy often specified for these sites is a sand cap, and sand caps amended with sorbent materials (such as organoclays) are being pilot‐tested. This article discusses a laboratory study to assess the effectiveness of a sand layer for controlling NAPL migration. The study used a test column composed of a Plexiglas tube containing a tar source that was buried beneath a 30‐cm‐thick layer of fine sand. Water was added to the column until 5 cm of standing water covered the sand layer. To simulate ebullition, air was injected into the base of the sand column at approximately 200 mL/min. It was observed that the gas and NAPL migrated primarily through channels and fractures in the sand, and was not filtered through a network of stable pores. Tar migrated through the sand layer in 12 hours and accumulated on the water surface for several hours before losing its buoyancy and settling back down to the sand surface. After ending the tar migration experiment, the test column was frozen to preserve structures in the sand. The study showed that the tar migrated through the simulated sand cap in small (2‐mm) channels only a few sand grains thick. The results of this laboratory work call into question the effectiveness of sand caps for controlling NAPL migration from sediment in the presence of ebullition. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
This study evaluated pilot‐scale active caps composed of apatite, organoclay, biopolymers, and sand for the remediation of metal‐contaminated sediments. The active caps were constructed in Steel Creek, at the Savannah River Site near Aiken, South Carolina. Monitoring was conducted for 12 months. Effectiveness of the caps was based on an evaluation of contaminant bioavailability, resistance to erosion, and impacts on benthic organisms. Active caps lowered metal bioavailability in the sediment during the one‐year test period. Biopolymers reduced sediment suspension during cap construction, increased the pool of carbon, and lowered the release of metals. This field validation showed that active caps can effectively treat contaminants by changing their speciation, and that caps can be constructed to include more than one type of amendment to achieve multiple goals. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Thin sediment capping is a commonly used technique to prevent mobilization of contaminants from sediments into the environment. A 70‐m‐deep subaqueous confined disposal facility (CDF, 350,000 m2) at Malmøykalven, Oslofjord, which received dredged contaminated sediments from Oslo Harbor, was capped with 148,900 m3 of sand in 2009. This research serves as a case study regarding some of the key considerations involved with the cap placement and monitoring of the cap layer. Uncertainty is included in all the cap thickness monitoring methods and a combined use of them provided a better understanding of the cap coverage and structure at the site. An open water disposal model (STFATE) was used to simulate the behavior of the barge‐released cap material. The modeling results were consistent with field observations regarding the material spread, and the results provided insight into the relatively high material losses calculated. Better knowledge obtained of material settling resulted in cap properties and cap monitoring methods that are useful when planning similar operations. ©2015 Wiley Periodicals, Inc.  相似文献   

5.
A fish‐consumption advisory is currently in effect in a seven‐mile stretch of the Grasse River in Massena, New York, due to elevated levels of PCBs in fish tissue. One remedial approach that is being evaluated to reduce the PCB levels in fish from the river is in situ capping. An in‐river pilot study was conducted in the summer of 2001 to assess the feasibility of capping PCB‐containing sediments of the river. The study consisted of the construction of a subaqueous cap in a seven‐acre portion of the river using various combinations of capping materials and placement techniques. Optimal results were achieved with a 1:1 sand/topsoil mix released from a clamshell bucket either just above or several feet below the water surface. A longer‐term monitoring program of the capped area commenced in 2002. Results of this monitoring indicated: 1) the in‐place cap has remained intact since installation; 2) no evidence of PCB migration into and through the cap; 3) groundwater advection through the cap is not an important PCB transport mechanism; and 4) macroinvertebrate colonization of the in‐place cap is continuing. Additional follow‐up monitoring in the spring of 2003 indicated that a significant portion of the cap and, in some cases, the underlying sediments had been disturbed in the period following the conclusion of the 2002 monitoring work. An analysis of river conditions in the spring of 2003 indicated that a significant ice jam had formed in the river directly over the capping pilot study area, and that the resulting increase in river velocities and turbulence in the area resulted in the movement of both cap materials and the underlying sediments. The pilot cap was not designed to address ice jam–related forces on the cap, as the occurrence of ice jams in this section of the river had not been known prior to the observations conducted in the spring of 2003. These findings will preclude implementation of the longer‐term monitoring program that had been envisioned for the pilot study. The data collected immediately after cap construction in 2001 and through the first year of monitoring in 2002 serve as the basis for the conclusions presented in this article. It should be recognized that, based on the observation made in the spring of 2003, some of these conclusions are no longer valid for the pilot study area.The occurrence of ice jams in the lower Grasse River and their importance on sediments and PCBs within the system are currently under investigation. © 2003 Wiley Periodicals, Inc.  相似文献   

6.
Active capping involves the use of capping materials that react with sediment contaminants to reduce their toxicity or bioavailability. Although several amendments have been proposed for use in active capping systems, little is known about their long‐term ability to sequester metals. Recent research has shown that the active amendment apatite has potential application for metals‐contaminated sediments. The focus of this study was to evaluate the effectiveness of apatite in the sequestration of metal contaminants through the use of short‐term laboratory column studies in conjunction with predictive, numerical modeling. A breakthrough column study was conducted using North Carolina apatite as the active amendment. Under saturated conditions, a spike solution containing elemental As, Cd, Co, Se, Pb, Zn, and a nonreactive tracer was injected into the column. A sand column was tested under similar conditions as a control. Effluent water samples were periodically collected from each column for chemical analysis. Relative to the nonreactive tracer, the breakthrough of each metal was substantially delayed by the apatite. Furthermore, breakthrough of each metal was substantially delayed by the apatite compared to the sand column. Finally, a simple 1‐D, numerical model was created to qualitatively predict the long‐term performance of apatite based on the findings from the column study. The results of the modeling showed that apatite could delay the breakthrough of some metals for hundreds of years under typical groundwater flow velocities. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
The potential effectiveness of a new composite-aggregate capping technology, AquaBlokTM—in physically isolating contaminated, fine-grained sediments derived from an Ohio, Lake Erie tributary—was evaluated in the laboratory. In particular, large-scale settling-column studies were conducted to determine the degree to which composite-aggregate material penetrates into and/or mixes with the sediment, perhaps affecting the degree to which sediment could be physically isolated through capping. Additionally, large-scale flume studies were conducted to determine resistance of the composite-aggregate material to significant and long-term, fluvial-like erosive forces; the resistance of other potential capping materials was also evaluated for comparison. Experimental results indicate that the composite-aggregate material effectively isolates sediment through the formation of a continuous and relatively erosion-resistant, hydrated capping layer atop the sediments.  相似文献   

8.
The capping of waste management units and contaminated soils is receiving increasing attention as a low-cost method for hazardous chemical site remediation. Capping is used to prevent further groundwater pollution by existing waste management units and contaminated soils through limiting the moisture that enters the wastes. In principle, for wastes located above the water table, the construction of an impermeable cap can prevent leaching of the wastes (leachate generation) and groundwater pollution. In practice, appropriately designed and constructed RCRA caps can provide for only short-term prevention of groundwater pollution. Alternative approaches are available for capping of wastes that can be effective in preventing moisture from entering the wastes and concomitant groundwater pollution. These approaches recognize the inability of the typical RCRA cap to keep wastes dry for as long as waste constituents will be a threat and, most importantly, provide the necessary funds to effectively address all plausible worst-case scenario failures that could occur at a capped waste management unit or contaminated soil area.  相似文献   

9.
A 50 ha known contaminated site in Bayonne, New Jersey, U.S.A. is permitted to receive up to 3 × 106 m3 of sediment dredged from navigation channels in the New York/New Jersey Harbor. Much of the sediment is expected to contain low to moderate concentrations of industrial and agricultural chemicals, including Polychlorinated Biphenyls (PCBs). The dredged material brought to the site is stabilized with cement and then placed as a capping and grading layer. The flux of PCBs from drying stabilized dredged material has been estimated from measurements of PCB air concentrations at two heights above the ground along with micrometeorological observations. A statistically significant gradient in PCB concentrations has been consistently measured in the first 3 m above the ground. Observed PCB fluxes were highest over freshly placed stabilized dredged sediment and decreased as it cured. The highest flux observed in this study was 7214 ng/m2/h, but during subsequent sampling intervals at the same site, the flux estimates decreased by an order of magnitude over a 5-day interval.  相似文献   

10.
活性焦是以煤为主要原料生产的一种新型吸附材料,目前国内外研究已认可了其工业价值,但活性焦的高成本使得该技术的推广受到了影响。因此此次研究从活性焦制备工艺入手,结合考虑国内外关于活性焦改性方面的研究,从而提高活性焦性能,提高其性价比。  相似文献   

11.
The United States EPA Subtitle D municipal solid waste landfill requirements specify that the permeability of a cap to a landfill be no greater than the permeability of the underliner. In recent years the concept of the evapotranspirative (ET) cap has been developed in which the cap is designed to store all rain infiltration and re-evapotranspire it during dry weather. Concern at the long period required for landfilled municipal solid waste to decompose and stabilize in arid and semi-arid climates has led to an extension of the concept of the ET cap. With the infiltrate-stabilize-evapotranspire (ISE) cap, rain infiltration during wet weather is permitted to enter the underlying waste, thus accelerating the decomposition and stabilization process. Excess infiltration is then removed from both waste and cap by evaporation during dry weather. The paper describes the construction and operation of two sets of experimental ISE caps, one in a winter rainfall semi-arid climate, and the other in a summer rainfall semi-arid climate. Observation of the rainfall, soil evaporation and amount of water stored in the caps has allowed water balances to be constructed for caps of various thicknesses. These observations show that the ISE concept is viable. In the limit, when there is insufficient rainfall to infiltrate the waste, an ISE cap operates as an ET cap.  相似文献   

12.
This study evaluated chemically active amendments used to construct active caps for remediating contaminated sediments. Three experiments assessed the effects of apatite, organoclay, zeolite, and biopolymers (chitosan and xanthan) on metal mobility, retention, and speciation. The first showed that the amendments individually and in mixtures (2 percent dry weight) reduced the concentrations of Cr, Co, Ni, and Pb in water extracts from reduced sediment. The second experiment, which used sequential extraction procedures to evaluate the effects of the amendments on metal speciation, showed that the amendments reduced the potentially mobile fractions of Pb, Zn, Ni, Cr, and Cd that are likely to be bioavailable. Last, column studies showed that active caps composed of the amendments prevented the diffusive transport of metals from contaminated sediment over six months. In addition, there was a “zone of influence” beneath the caps in which water extractable concentrations of metals declined substantially compared with untreated sediment. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
An alternative landfill capping technique known as ‘Phytocapping’ (establishment of perennial plants on a layer of soil placed over the waste) was trailed in Rockhampton, Australia. In this technique, trees were used as ‘bio-pumps’ and ‘rainfall interceptors’ and soil cover as ‘storage’ of water. The environmental performance of the phytocapping system was measured based on its ability to minimise water percolation into the waste. The percolation rate was modelled using HYDRUS 1D for two different scenarios (with and without vegetation) for the thick and thin caps, respectively. Results from the modelling showed percolation rates of 16.7 mm year?1 in thick cover and 23.8 mm year?1 in thin cover, both of which are markedly lower than those expected from a clay cap. Results from monitoring and observations showed that 19 trees out of 21 tree species grew well in the harsh landfill environment. Top ten performing species have been identified and are recommended to be grown on phytocaps in the Central Queensland region.  相似文献   

14.
Legislation from developed countries indicates that planting trees on containment landfills is generally forbidden. Concerns centre on the supposition that tree roots can penetrate into and through capping materials, and will thus compromise control of water ingress into waste, and allow the escape of landfill gas. An associated anxiety is that if roots penetrate a clay cap they could cause desiccation and cracking of the clay through excessive moisture abstraction. It is also considered that trees growing on the relatively shallow soil above a landfill cap could be especially prone to uprooting. However, a review of the world literature indicates that maximum depths achieved by tree roots are usually between 1–2 m. Almost 90% of a tree's roots may be found in the upper 0.6 m of soil. Tree roots are highly sensitive to environmental conditions and their downward penetration can be restricted by a number of soil factors including compaction, poor aeration and infertility. A detailed study of these factors indicates that the materials used for capping landfill sites, such as HDPE (high density polyethylene) and compacted clays, can provide an effective barrier to downward root growth. The available information also suggests that tree roots are extremely unlikely to be a primary cause of desiccation cracking in a clay cap owing to their inability to extract more than about one-quarter of the total moisture held in a clay of the density required to ensure a permeability of 1×10−9m s−1. Trees growing on landfill sites with a rootable soil depth of at least 1.5 m should be at no greater risk of windthrow than most forest trees on undisturbed sites. Methods are available to assess the likelihood of windthrow. In any event, windthrow should not cause disruption of a cap, due to the inability of tree roots to penetrate HDPE, or mineral materials compacted to a bulk density of 1.8 g cm−3.  相似文献   

15.
A pile of pyrite cinders discharged from a former manufacturing facility rest upon the bottom of the St. Lawrence River adjacent to Clark Island. In situ capping was the selected remedy to control both the fine particle resuspension that produced a red mud cloud in the water, commonly formed on windy days, and the soluble metals concentrations originating from the pyrite pile. Metal mass balances around the pile allowed estimates of the pre‐capping release rates. Elevated concentrations above the pile were observed for eight metals; these included iron, lead, mercury, selenium, arsenic, copper, cadmium, and zinc. After iron, the highest concentration in the pyrite particles were cadmium and zinc present in the 1,000 mg/kg range. Mercury was the lowest at the 10 mg/kg level in the pyrite solids. For iron the soluble release rate was estimated to be 0.08 g/s, and the particle release was 0.8 to 1.2 g/s. A 30 cm cap consisting of particles 19 to 40 mm in diameter is proposed for the site. Its placement covers a ten‐hectare area and is expected to isolate the fine pyrite particles and prohibit their resuspension into the water column. Design estimates of steady state flux reduction efficiencies range from a low of 99.21 percent for iron to a high of 99.96 percent for copper. Breakthrough times to achieve these steady state flux reductions range from 100 to 3,800 years and metal porewater concentrations at 5 cm below the cap surface are estimated to be reduced by 83 percent. Although soluble metals will continue to be released from the pile zone, the flux of all the metals will be significantly reduced. © 2002 Wiley Periodicals, Inc.  相似文献   

16.
Hyporheic exchange is known to provide an important control on nutrient and contaminant fluxes across the stream-subsurface interface. Similar processes also mediate interfacial transport in other permeable sediments. Recent research has focused on understanding the mechanics of these exchange processes and improving estimation of exchange rates in natural systems. While the structure of sediment beds obviously influences pore water flow rates and patterns, little is known about the interplay of typical sedimentary structures, hyporheic exchange, and other transport processes in fluvial/alluvial sediments. Here we discuss several processes that contribute to local-scale sediment heterogeneity and present results that illustrate the interaction of overlying flow conditions, the development of sediment structure, pore water transport, and stream-subsurface exchange. Layered structures are shown to develop at several scales within sediment beds. Surface sampling is used to analyze the development of an armor layer in a sand-and-gravel bed, while innovative synchrotron-based X-ray microtomography is used to observe patterns of grain sorting within sand bedforms. We show that layered bed structures involving coarsening of the bed surface increase interfacial solute flux but produce an effective anisotropy that favors horizontal pore water transport while limiting vertical penetration.  相似文献   

17.
The Muggah Creek estuary in Sydney, Nova Scotia, received liquid and solid wastes from a steel mill and its associated coke ovens for approximately 100 years. This resulted in pollution of soils and sediments with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), heavy metals, and other pollutants, including those in untreated domestic wastewaters. The Canadian federal and Nova Scotia provincial governments organized the Sydney Tar Ponds Agency (STPA) to develop a remediation approach for the Coke Ovens site soils and Sydney Tar Ponds sediments. The STPA developed a remediation approach for the Sydney Tar Ponds sediments, involving solidification/stabilization (S/S) through mixing cement and other materials into the sediments, and then capping them as a waste pile. High‐density polyethylene (HDPE) plastic sheeting vertical barriers are proposed to be used to divert groundwater and surface water from entering into the S/S‐treated sediments and to collect any water and associated pollutants released from the S/S‐treated sediments. The Coke Ovens site soils are proposed to be landfarmed to reduce some of the PAHs and other pollutants and then capped with a layer of soil. This remediation program is estimated to cost on the order of $400 million (CAN). This article presents a review of the significant potential problems with the STPA proposed remediation strategy of the Sydney Tar Ponds sediments and Coke Ovens site soils. © 2006 Wiley Periodicals, Inc.  相似文献   

18.
Study of fine sediments for making lightweight aggregate.   总被引:1,自引:0,他引:1  
The objective of this study was to investigate the recycling of the fine sediments of Shih-Men Reservoir to manufacture lightweight aggregate. By qualitative and quantitative analysis of the fine sediment and sintered aggregate through soil test, X-ray fluorescence, X-ray diffraction and scanning electron microscopy, a strategy of recycling fine sediment as aggregate for other similar material is proposed. The test results indicate that such fine sediment can be classified as low plastic clay, and clay of such chemical composition is located in the Riley's 'area of bloating'. The particle density of sintered lightweight aggregate decreases when the sintering temperature increases especially above 1200 degrees C due to phase transformation and formation of a vitrified layer on the surface through subsequent dehydration, bloating and collapsing stages. Our findings show that the fine sediment of Shin-Men Reservoir could be a suitable raw material for making expanded lightweight aggregate sintered at 1200 to 1300 degrees C for 10 to 12 min by a programmable furnace and a diffusion process.  相似文献   

19.
A novel, multilayered shoreline cap was designed and installed to mitigate the release of petroleum light nonaqueous phase liquid (LNAPL) and dissolved‐phase groundwater constituents to the Willamette River in Portland, OR. Releases of LNAPL related to upland impacts caused occasional sheens on a portion of the river within the Portland Harbor Superfund Site. The frequency and volume of sheens decreased following the installation of an upland sheet pile barrier wall, but occasional sheens related to LNAPL impacts stranded downgradient of the wall continued–prompting the design of a shoreline remedy. Because the site is located within the Portland Harbor Superfund Site, the cap was designed to mitigate sheen and to meet the objectives specified in the Portland Harbor Record of Decision including limiting the discharge of certain dissolved‐phase constituents of interest. The cap design was the first instance of combining an oleophilic bio‐barrier to mitigate sheen and an activated carbon layer to capture dissolved‐phase constituents. No sheens have been visually observed since cap installation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号