首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although many conventional physical remediation methods are viewed as proven, they often only relocate wastes to other sites or into the air. How do the emerging biological and chemical in situ methods perform in the same applications? This article reviews their results (much of it in the laboratory) as well as their promise of more complete neutralization of hazardous wastes, lower capital costs, and longer-duration cleanup processes. The optimal method may be a combination of chemical and biological in situ techniques with physical pump-and-treat methods.  相似文献   

2.
3.
4.
In 1993 environmental consultants, working in concert with the State of Michigan, discovered groundwater contamination that threatened the drinking water supply of the town of Big Rapids. The contamination originated from leaking underground storage tanks and gasoline lines, which were removed. A pilot study indicated the contaminated area extended to 240′ x 180′ and affected soil as well as groundwater. A remediation plan was designed by and implemented by Continental Remediation Systems, Inc., a Natick, Massachusetts, firm. The remediation plan is ongoing and includes an interceptor trench to stop gasoline from flowing into the creek, as well as air sparging to vent and treat the contaminated soil. It is anticipated that the remediation project will take six months to complete. The chief advantage of on-site remediation is that it avoids the costs and liabilities associated with landfill disposal and no materials need leave the site.  相似文献   

5.
Nanotechnology application to contaminated site remediation, and especially the use of nanoscale zero‐valent iron particles to treat volatile organic compound (VOC)‐impacted groundwater, is now recognized as a promising solution for cost‐effective in situ treatment. Results obtained during numerous pilot tests undertaken by Golder Associates between 2003 and 2005 in North America (United States and Canada) and Europe have been used to present a synthetic cross‐comparison of technology dynamics. The importance of a comprehensive understanding of the site‐specific geological, hydrogeological, and geochemical conditions, the selection of appropriate nanoscale particles, the importance of monitoring geochemical parameters during technology application, and the potential of nanoparticle impact on microbial activity are discussed in this article. The variable technology dynamics obtained during six pilot tests (selected among numerous other tests) are then presented and discussed. © 2006 Wiley Periodicals, Inc.  相似文献   

6.
The European Commission (EC) has recognized a need for strengthening innovation of environmental technologies in order to increase competitiveness of European technologies on a global market and to achieve a more sustainable development in Europe. In the area of soil and groundwater remediation, innovative technologies are principally available and have proven applicability and performance on demonstration scales, but market uptake is disappointing. Consequently, initiatives have been launched in order to promote application of these technologies and to investigate on the harmonization of applications. The European Co‐ordination Action for Demonstration of Efficient Soil and Groundwater Remediation (EURODEMO), an EC‐funded project, is one strategic initiative for supporting these goals. This article summarizes results obtained so far regarding the investigation of the European situation and some undertaken and envisaged measures to achieve better market uptake. The results of this research project may serve as prerequisites for a European Environmental Technologies Verification (ETV) process. © 2006 Wiley Periodicals, Inc.  相似文献   

7.
In the early 1990s, a soil removal action was completed at a former disposal pit site located in southern Michigan. This action removed waste oil, cutting oil, and chlorinated solvents from the unsaturated zone. To contain groundwater contaminant migration at the site, a groundwater pump‐and‐treat system comprised of two extraction wells operating at a combined flow of 50 gallons per minute, carbon treatment, and a permitted effluent discharge was designed, installed, and operated for over 10 years. Groundwater monitoring for natural attenuation parameters and contaminant attenuation modeling demonstrated natural attenuation of the contaminant plume was adequate to attain site closure. As a result of incomplete contaminant source removal, a rebound of contaminants above the levels established in the remedial action plan (RAP) has occurred in the years following system shutdown and site closure. Groundwater concentrations have raised concerns regarding potential indoor air quality at adjacent residential properties constructed in the past 9 to 10 years. The only remedial option available in the original RAP is to resume groundwater pump‐and‐treat. To remediate the source area, an alternate remediation strategy using an ozone sparge system was developed. The ozone sparge remediation strategy addresses the residual saturated zone contaminants beneath the former disposal pit and reestablishes site closure requirements without resumption of the pump‐and‐treat system. A pilot study was completed successfully; and the final system design was subsequently approved by the Michigan Department of Environmental Quality. The system was installed and began operations in July 2010. As of the January 2011 monitoring event, the system has shown dramatic improvement in site contaminant concentrations. The system will continue to operate until monitoring results indicate that complete treatment has been obtained. The site will have achieved the RAP objectives when the system has been shut down and meets groundwater residential criteria for four consecutive quarters. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
Numerical models were used to simulate alternative funnel‐and‐gate groundwater remediation structures near property corners in hypothetical homogeneous and heterogeneous unconfined aquifers. Each structure comprised a highly permeable central gate (hydraulic conductivity = 25 m/d) and soil‐bentonite slurry walls (hydraulic conductivity = 0.00009 m/d). Gates were perpendicular to regional groundwater flow and approximately 5 m from a contaminant plume's leading tip. Funnel segments collinear to the central gate reached property boundaries; additional funnel segments followed property boundaries in the most hydraulically upgradient direction. Structures were 1 m thick and anchored into the base of the aquifer. Two structures were simulated for each aquifer: one with a 3.0‐m‐long central gate and funnels on either side; and a second with a 1.5‐m‐long central gate, funnels on either side, and 0.75‐m‐long end gates. Funnels were lengthened in successive simulations, until a structure contained a contaminant plume. Results suggest that, for the same total gate length, one‐gate structures may facilitate more rapid remediation, up to 44 percent less time in trials conducted in this study, than multiple‐gate structures constructed near property corners. However, in order to effectively contain a plume, one‐gate structures were up to 46 percent larger than multiple‐gate structures. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Heavy metals and toxic organic contaminants are found at numerous industrial and military sites. The generally poor performance of conventional pump‐and‐treat schemes has made the development of improved methods for contaminated site remediation a significant environmental priority. One such innovative method is cyclodextrin‐enhanced flushing of the contaminated porous media and groundwater. Cyclodextrin is a glucose‐based molecule that is produced on industrial scales by microorganisms. Over the last years, several cyclodextrin derivatives have received extensive research interest. It was shown that cyclodextrins can significantly enhance the solubility of toxic organics, and in some cases, heavy metals and radioactive isotopes. As a sugar, cyclodextrin is considered relatively non‐toxic to humans, plants, and soil microbes. Thus, there are minimal health‐related concerns associated with the injection of cyclodextrin into the subsurface, which is an inherent advantage for use of cyclodextrins as a remediation agent. This paper provides a review of the available literature concerning use of cyclodextrin for remediation of groundwater and soil.  相似文献   

10.
Reactive walls containing metallic iron have been installed at several commercial sites in the United States to degrade chlorinated organic compounds in groundwater. Although the results of laboratory studies conducted to determine reaction mechanisms have been widely disseminated, little information has been published on the full-scale application of this technology. This article describes the construction, implementation, and cost of in-situ reactive walls at three commercial sites.  相似文献   

11.
At many sites, long‐term monitoring (LTM) programs include metals as chemicals of concern, although they may not be site‐related contaminants and their detected concentrations may be natural. At other sites, active remediation of organic contaminants in groundwater results in changes to local geochemical conditions that affect metal concentrations. Metals should be carefully considered at both types of sites, even if they are not primary contaminants of concern. Geochemical evaluation can be performed at LTM sites to determine if the monitored metals reflect naturally high background and, hence, can be removed from the analytical program. Geochemical evaluation can also be performed pre‐ and post‐treatment at active remediation sites to document the effects of organics remediation on metals and identify the processes controlling metal concentrations. Examples from both types of sites are presented in this article. © 2008 Wiley Periodicals, Inc.  相似文献   

12.
Directionally drilled horizontal wells offer the opportunity for significant cost savings and technical advantages over alternative trenched well and vertical well soil and groundwater remediation systems in many cases. The magnitude of the cost savings is a function of the remediation technology deployed and the values placed on the reduction of site impacts, dramatic reduction in the time required to achieve site remediation goals and requirements, the ability of horizontal well remediation to easily treat normally recalcitrant contaminants such as MTBE, and the ability to drill under paved areas, operating plants, residential areas, landfills, lagoons, waterways, ponds, basins, and other areas that are normally difficult or impossible to access with conventional drilling or trenching methods. In addition to improvements in site access capabilities, horizontal wells have been found capable of addressing contaminants that vertical wells do not readily treat, even with the same remediation technology deployed, especially if air‐based remediation technologies are deployed. With biosparging, for example, greater treatment capabilities of horizontal wells over vertical wells are attributed to greater oxygen flux over a broader area, a larger treatment zone, and extremely prolonged residence of groundwater contaminants in the aerobic treatment area, typically months or years. This article describes the use of directionally drilled horizontal wells for application of a variety of treatment technologies and includes costs of various options with a detailed comparison of biosparging options. © 2002 Wiley Periodicals, Inc.  相似文献   

13.
Thermal remediation of contaminated soils and groundwater by injection of hot air and steam using large‐diameter auger in situ soil mixing effectively remediates volatile and semivolatile organic compounds. This technology removes large amounts of contamination during the early treatment stages, but extended treatment times are needed to achieve high removal percentages. Combining thermal treatment with another technology that can be injected and mixed into the soil, and that continues to operate after removal of the drilling equipment, improves removal efficiency, and reduces cost. Using field‐determined pseudo first‐order removal rates, the cost of the combined remediation of chlorinated volatile organic compounds (CVOCs) by thermal treatment followed by reductive dechlorination by iron powder has been estimated as 57 percent of the cost of thermal treatment alone. This analysis was applied to a case‐study remediation of 48,455 cubic yards, which confirmed the cost estimate of the combined approach and showed over 99.8 percent removal of trichloroethene and other chlorinated VOCs. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
An Erratum has been published for this article in Remediation 16(1) 2005, 155–157. Water‐level data collection is a fundamental component of groundwater investigations and remediation. While the locations and depths of monitored wells are important, the frequency of data collection may have a large impact on conclusions made about site hydrogeology. Data‐logging water‐level probes may be programmed to record water levels at frequent intervals, providing site decision makers with abundant, detailed information on the response of an aquifer to both anticipated and unforeseen stresses. In this study, a network of movable probes has provided several years of hourly water‐ level data. The understanding of the site's phytoremediation system has been enhanced by the continuous data, but subsequent insights into an unexpected situation regarding the site's infrastructure have been the most valuable result of the monitoring program. © 2005 Wiley Periodicals, Inc.  相似文献   

15.
16.
Most environmental project managers are well versed in characterizing and remediating contaminants in soil and water media. When soil remediation activities are conducted at an environmental site, however, some project managers are faced with monitoring contaminants in the air medium for the first time. Remediation activities can disturb contaminants that are normally immobile in soil and transfer them to air. The resulting increase in airborne concentrations of contaminants, even if temporary, may be a health concern for individuals in neighboring residences or businesses. Perimeter air monitoring may be required by a regulatory agency to determine if unhealthy conditions are created and if work practices should be limited or modified. This article serves as a resource for project managers involved in perimeter air monitoring for soil remediation and provides a general summary of candidate sites, remediation activities that release contaminants, regulatory requirements, equipment and target contaminants, monitoring locations and schedule, analytical methods, and data interpretation. © 2007 Wiley Periodicals, Inc.  相似文献   

17.
A vacuum pyrolysis process was used for the remediation of hydrocarbon–contaminated soils from “Les Vidangeurs de Montréal” site in Mascouche in the province of Québec, near Montréal. Ten samples were tested on a laboratory scale batch reactor, and one sample was tested on a prototype process development unit. The process is simple, efficient, reliable, and economically competitive with other existing technologies. The vacuum pyrolysis process efficiently treated soils contaminated with a variety of pollution levels and types, irrespective of the soil matrix, providing treated soils meeting the A criterion (noncontaminated, residential level) of the Ministry of Environment Québec (MENVIQ). The pyrolytic oil and the noncondensable pyrolytic gases can be used as makeup fuel in the process, because they have a high calorific value and their combustion should not pose any emission problems. The waterphase effluent must be treated before discharge.  相似文献   

18.
As the remediation industry rapidly matures, a greater emphasis is placed on providing on-site remedies involving in-situ soil and groundwater technologies. Selecting and implementing cost-effective technologies requires a defined working process focused on integrating the relationship between the design engineer/scientist and the remedial contractor. This article briefly explores various contractual vehicles and their effect on the designer/contractor relationship and identifies preconstruction documents needed to initiate a remedial construction program. A detailed discussion is presented that describes the transition from remedial design to remedial construction and offers practical application of preconstruction, construction, and postconstruction techniques. Preconstruction techniques involve communication processes and procedures designed to reduce installation uncertainty, address constructability issues, promote value engineering alternatives, and reaffirm the project objectives. Construction techniques focus on effective ways to communicate and document problems and solutions encountered during construction activities. Postconstruction techniques describe ways to provide useful information that may have a continued effect on system performance or used to document the achievement of project goals.  相似文献   

19.
Following years of progress in designing and executing cleanups of contaminants at waste sites, the U.S. Air Force, state regulatory groups, and others are crafting methods to evaluate broader considerations of risk in remedial decisions. Integrating worker and climate risks into remediation efforts may confer significant benefits, but challenges exist to identifying, assessing, and accounting for them in the remedial process. For sites where future risk posed by contamination far exceeds the risk posed to workers who may be exposed to the contaminants during the remedial process, limiting the range of decision inputs to those presented by the site conditions made sense and provided a net benefit to human health and the environment. There are other sites, however, where future risk posed by the in situ contamination are at levels comparable to the real risks posed to workers, ecology, and even emerging concerns about climate change. For these sites, a net risk reduction cannot be assumed to be a result of remedial action, challenging the remedial community to develop new approaches to ensure positive results. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
The evaluation of microbial responses to three in situ source removal remedial technologies—permanganate‐based in situ chemical oxidation (ISCO), six‐phase heating (SPH), and steam injection (SI)—was performed at Cape Canaveral Air Station in Florida. The investigation stemmed from concerns that treatment processes could have a variety of effects on the indigenous biological activity, including reduced biodegradation rates and a long‐term disruption of community structure with respect to the stimulation of TCE (trichloroethylene) degraders. The investigation focused on the quantity of phospholipid fatty acids (PLFAs) and its distribution to determine the immediate effect of each remedial technology on microbial abundance and community structure, and to establish how rapidly the microbial communities recovered. Comprehensive spatial and temporal PLFA screening data suggested that the technology applications did not significantly alter the site's microbial community structure. The ISCO was the only technology found to stimulate microbial abundance; however, the biomass returned to predemonstration values shortly after treatment ended. In general, no significant change in the microbial community composition was observed in the SPH or SI treatment areas, and even small changes returned to near initial conditions after the demonstrations. © 2004 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号