首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remedial action was initiated and completed on an approximately 500-acre brownfield site in southern California within a period of five months during the summer of 1995. Remedial actions included design and construction of an approximately 14-acre cap, including a synthetic membrane; design, construction, and testing of an in-situ soil vapor extraction system; excavation, on-site treatment, and off-site disposal of approximately 7,000 cubic yards of residual waste and affected soil; and verification sampling, analysis, and health risk screening in 20 units of a former integrated steel mill. Completion of remedial action on this portion of the mill site within this time frame was required due to site redevelopment plans which included construction of an auto raceway with scheduled races in early 1997. Rapid remedial action was possible only through simultaneous completion of multiple remediation tasks. This could be done only with continuous communication and close coordination among the site owner, lead regulatory agency, and contractors.  相似文献   

2.
Residual tetrachloroethene (PCE) contamination at the former Springvilla Dry Cleaners site in Springfield, Oregon, posed a potential risk through the vapor intrusion, direct contact, and off‐site beneficial groundwater uses. The Oregon Department of Environmental Quality utilized the State Dry Cleaner Program funds to help mitigate the risks posed by residual contamination. After delineation activities were complete, the source‐area soils were excavated and treated on‐site with ex situ vapor extraction to reduce disposal costs. Residual source‐area contamination was then chemically oxidized using sodium permanganate. Dissolved‐phase contamination was subsequently addressed with in situ enhanced reductive dechlorination (ERD). ERD achieved treatment goals across more than 4 million gallons of aquifer impacted with PCE concentrations up to 7,800 micrograms per liter prior to remedial activities. The ERD remedy introduced electron donors and nutrient amendments through groundwater recirculation and slug injection across two aquifers over the course of 24 months. Adaptive and mass‐targeted strategies reduced total remedy costs to approximately $18 per ton within the treatment areas. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
This paper proposes the construction of steel pipe sheet pile (SPSP) cutoff walls for promoting remediation of water-soluble toxic substances and containment of water-soluble toxic substances at landfill sites in order to maintain and ensure the environmental safety of waste landfill sites over time. It investigates environmental safety at coastal waste landfill sites by applying water cut-off and remediation promotion techniques to the joint sections of SPSP water cut-off walls that provide shore protection for waste landfills. Results from the research herein show that the construction of SPSP water cut-off walls with features such as the containment of water-soluble toxic substances and remediation promotion is possible by applying water cut-off and remediation techniques to H–H joints, which are structural joint components of SPSP walls. In addition, they show that the performance of remediation in H–H joints can be controlled by adjusting the water cut-off efficiency of the H–H joint flange.  相似文献   

4.
A pilot phytoremediation project was conducted at the Mukluk site in Sprague, Connecticut, formerly a private skeet shooting range. A series of experiments was conducted to investigate if any plants can be effective lead phytoextractors for this site that has very high soil lead concentrations and low soil pH. Greenhouse screening of plants for lead resistance and accumulation using field soil was implemented as the initial step before the field installation. Herbaceous plant species with known lead phytoextraction capabilities included Indian mustard and blue fescue; a few willow clones with purported heavy metal resistance were also tested. Based on the results of the greenhouse experiments, blue fescue appeared to be sensitive to high lead concentration in soil, and only willows and Indian mustard along with various soil amendments were selected for the field installation. Indian mustard grew poorly in most of the treatments at the site except in the compost and lime treatment. Lead accumulation by this species was low in all treatments. In contrast, willows showed tolerance to very high lead concentrations present in the soil and were able to uptake and translocate lead into aboveground tissues. However, lead content in aerial tissues was low, and no change in soil lead concentration at the site was recorded post‐harvest after one growing season. It appeared that highly unfavorable soil characteristics at the Mukluk site complicated the species selection, and no effective phytoextractors have been found for this location. These suggest that the feasibility of phytostabilization and possible production of biofuel from willow biomass on these types of sites should be further investigated. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
The Sandia National Laboratories Environmental Restoration Project is in the process of determining the nature and extent of environmental contamination at numerous potential release sites. Sites found to be contaminated above certain action levels must be remediated. Sandia is responsible for preparing preliminary cost estimates for remediation activities in order to meet Department of Energy planning requirements for future funding. Sandia used the ENVEST parametric cost-estimating model to prepare conceptual cost estimates for remediation prior to having definitive knowledge of the nature and extent of contamination. This article describes the estimating approach and the results achieved at Sandia.  相似文献   

6.
Contaminants from dry‐cleaning sites, primarily tetrachloroethene (PCE), trichloroethene (TCE), cis‐dichloroethene (cis‐DCE), and vinyl chloride (VC), have become a major concern because of the limited funds and regulatory programs to address them. Thus, natural attenuation and its effectiveness for these sites needs to be evaluated as it might provide a less costly alternative to other remediation methods. In this research, data from a site in Texas were analyzed and modeled using the Biochlor analytical model to evaluate remediation times using natural attenuation. It was determined that while biodegradation and source decay were occurring at the site, the resulting attenuation rates were not adequate to achieve cleanup in a reasonable time frame without additional source remediation or control strategies. Cleanup times exceeded 100 years for all constituents at the site boundary and 800 years at the source for PCE, assuming cleanup levels of 0.005 mg/L for PCE and TCE and 0.07 mg/L and 0.002 mg/L for cis‐DCE and VC, respectively. © 2005 Wiley Periodicals, Inc.  相似文献   

7.
Groundwater at the former Serry's Dry Cleaning site in Corvallis, Oregon, was impacted by chlorinated volatile organic compounds (CVOCs). The primary CVOCs impacting the site include tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride, which were detected at concentrations up to 22,000, 1,700, 3,100, and 7 μg/L, respectively, prior to treatment. Large seasonal fluctuations in groundwater CVOC concentrations indicated that a significant fraction of the CVOC mass was present in the smear zone. Field‐scale pilot tests were performed for the Oregon Department of Environmental Quality's Dry Cleaner Program to evaluate the performance of EHC® in situ chemical reduction (ISCR) technology. The pilot study involved evaluating field performance and physical distribution into low‐permeability soil using basic Geoprobe® injection tooling. The testing results confirmed that bioremediation enhanced by ISCR supported long‐term treatment at the site. This article describes the implementation and results of the tests. Performance data are available from a three‐year period following the injections, allowing for a discussion about sustained performance and reagent longevity. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
This article summarizes the project and risk management of a remediation/reclamation project in Lavrion, Greece. In Thoricos the disposal of mining and metallurgical wastes in the past resulted in the contamination with heavy metals and acid mine drainage. The objective of this reclamation project was to transform this coastal zone from a contaminated site to an area suitable for recreation purposes. A separate risk assessment study was performed to provide the basis of determining the relevant environmental contamination and to rate the alternative remedial schemes involved. The study used both existing data available from comprehensive studies, as well as newly collected field data. For considering environmental risk, the isolation and minimization of risk option was selected, and a reclamation scheme, based on environmental criteria, was applied which was comprised of in situ neutralization, stabilization and cover of the potentially acid generating wastes and contaminated soils with a low permeability geochemical barrier. Additional measures were specifically applied in the areas where highly sulphidic wastes existed constituting active acid generation sources, which included the encapsulation of wastes in HDPE liners installed on clay layers.  相似文献   

9.
The continuous and discontinuous release of petroleum hydrocarbons from an oil refinery in Alaska resulted in the contamination of an unconfined glacial outwash aquifer. Geologic conditions at the site allowed for the vertical migration of hydrocarbon product to the water table and subsequent formation of an areally extensive floating product layer. Since the petroleum hydrocarbon phase would provide a major source of BTX (benzene, toluene, xylene) contamination to the groundwater, interim product and groundwater recovery measures were initiated to limit aquifer degradation. Phase I remedial activities involved the operation of nine well pairs, with one well used for groundwater extraction and the other for product recovery. Phases II and III involved expansion of the recovery well network and use of a two-pump system. Petroleum product recovered was reprocessed at the refinery. Contaminated groundwater was initially treated using the refinery's wastewater treatment system, but treatment inefficiencies and continued system expansion necessitated use of a separate treatment unit. Performance evaluations indicate that the remedial phases have been successful in halting further contaminant migration and in recovering a significant volume of the released petroleum hydrocarbons.  相似文献   

10.
Remediation developed a Sustainable Remediation Panel in the Summer 2009 issue, which featured the Sustainable Remediation Forum White Paper. The panel is composed of leaders in the field of sustainable remediation who have volunteered to provide their opinions on difficult subjects related to the topic of how to integrate sustainability principles into the remediation practice. The panel's opinions are provided in a question‐and‐answer format, whereby selected experts provide an answer to a question. This issue's question is provided below, followed by opinions from five experts in the remediation field.
相似文献   

11.
Chlorinated solvents were released to the surficial groundwater underneath a former dry cleaning building, resulting in a groundwater plume consisting of high concentrations of trichloroethene (TCE) and cis‐1,2‐dichloroethene (cis‐1,2‐DCE) and low concentrations of tetrachloroethene (PCE) and vinyl chloride. The initial remedial action included chemical oxidation via injection of 14,400 gallons of Fenton's Reagent in March 2002, and an additional 14,760 gallons in April 2002. A sharp reduction of contaminant concentrations in groundwater was observed the following month; however, rebound of contaminant concentrations was evident as early as October 2002. A source area of PCE‐impacted soils was excavated in June 2004. Following the excavation, Golder Associates Inc. (2007) implemented a biostimulation plan by injecting 55 gallons of potassium lactate (PURASAL® HiPure P) in September 2005, and again in February 2006. Comparing the preinjection and postinjection site conditions, the potassium lactate treatments were successful in accomplishing a 40 to 70 percent reduction in mass within four months following the second injection. Elevated vinyl chloride concentrations have persisted through both injection events; however, significant vinyl chloride reduction has been observed in one well with the highest total organic carbon (TOC) concentrations following each injection. © 2008 Wiley Periodicals, Inc.  相似文献   

12.
报废电子电器产品的回收利用受到国家与行业的高度重视。大型拆解加工企业如雨后春笋般涌现,为后续深加工利用奠定了良好的基础,极大地推动了行业的发展。针对目前国内贵金属回收中粗银电解技术与过程控制技术的不足进行研究,将技术与管理有机结合起来,并在企业生产上予以实施,效果良好。  相似文献   

13.
In situ solidification (ISS) is a reliable, EPA‐recognized technology for the treatment of industrial and waste sites. ISS was employed at a former manufactured gas plant (MGP) site in Macon, Georgia, for the treatment of approximately 33,000 cubic yards of coal tar residues in the saturated zone soil. The site is regulated by the Georgia Environmental Protection Division (EPD) under the Hazardous Site Rehabilitation Act (HSRA) and is located approximately four blocks from downtown Macon. This article will review the technical and regulatory basis for the successful use of this technology, provide an overview of the treatability and pilot testing used to develop the design and implementation of the treatment process, and present the results of the application of ISS to an MGP site. The results of groundwater monitoring, pre and postremediation, will also be discussed. © 2004 Wiley Periodicals, Inc.  相似文献   

14.
Decisions made during the course of investigating and remediating a contaminated site, as well as the technology used, are most often driven exclusively by physical, technical, and health-based concerns. Additionally, in both determining and managing the potential risks posed by a remediation project, the focus tends to be placed primarily on health risks. However, a contaminated site and its remediation are neither static over time nor do they exist in a vacuum. Other elements of risk associated with the site and remedial activities include continuing regulatory oversight and compliance, public and agency relations, remedial technology costs, current and future land-use issues, and future technological/regulatory risks. Agencies, consultants, contractors, and facility management must consider these other non-health-related elements of risk. Additionally, efforts made to communicate a project's decisions, technologies, and risks are often made in a defensive or reactive posture, resulting in ineffective communication and an alienated, angry, or distrustful public. Proactive risk communication, as well as public involvement in the remedial process, are critical to the success of any remedial activity.  相似文献   

15.
This article presents site closure strategies of source material removal and dissolved‐phase groundwater natural attenuation that were applied at two manufactured gas plant (MGP) sites in Wisconsin. The source removal actions were implemented in 1999 and 2000 with groundwater monitoring activities preceding and following those actions. Both of these sites have unique geological and hydrogeological conditions. The article briefly presents site background information and source removal activities at both of these sites and focuses on groundwater analytical testing data that demonstrate remediation of dissolved‐phase MGP‐related groundwater impacts by natural attenuation. A statistical evaluation of the data supports a stable or declining MGP parameter concentration trend at each of the sites. A comparison of the site natural attenuation evaluation is made to compare with the requirements for site closure under the Wisconsin Department of Natural Resources regulations and guidance. © 2003 Wiley Periodicals, Inc.  相似文献   

16.
The partitioning tracer test (PTT) is a characterization tool that can be used to quantify the porespace saturation (SN) and spatial distribution of dense nonaqueous phase liquids (DNAPLs) in the subsurface. Because the method essentially eliminates data interpolation errors by directly measuring a relatively large subsurface volume, it offers significant promise as a remediation metric for DNAPL‐zone remediation efforts. This article presents, in detail, the design and results of field PTTs conducted before and after a DNAPL‐zone treatment at the Naval Amphibious Base Little Creek, Virginia Beach, Virginia. The results from different tracers yield a relatively large range in SN estimates, indicating notable uncertainty and presenting significant challenges for meaningful interpretation. Several potential interpretation methods are presented, resulting in an estimated DNAPL removal range of 15 to 109 L. While this range is large, it is consistent with the DNAPL removal (~30 L) determined from analysis of effluent concentration measurements collected during the remediation efforts. At this site, the initial and final SN values are low, and the relatively inconsistent performance of the various tracers indicates that these levels are near the lower practical quantification limit for these PTTs; however, the effective lower quantification limit for these tests is unknown. Generally, an understanding of lower quantification limits is particularly important for interpretation of post‐remediation PTTs because SN values are likely to be low (due to remediation efforts) and the SN estimated from the PTT may be used to predict long‐term dissolved plume behavior and assess associated environmental risk. Partitioning tracer test quantification limits are test‐specific, as they are dependent on a variety of factors including analytical uncertainty, tracer breakthrough characteristics, and tracer data integration techniques. The results of this case study indicate that methods for estimating lower quantification limits for field PTTs require further development. © 2004 Wiley Periodicals, Inc.  相似文献   

17.
Field trials with inorganic fertilizer (nitrogen, phosphorus, and potassium) nutrients were simulated in the greenhouse to remediate hydrocarbon‐polluted soils from a spill site in the Niger Delta, Nigeria. Samples of the polluted soils taken from two depths were displayed in a randomized complete block (RCB) design and treated with 10–100 g of (NH4)2SO4, KH2PO4, and KCl. The agronomic addition of the chemical nutrients was found to enhance the concentrations of nitrate‐nitrogen, phosphate‐phosphorus, and potassium in the soils. Pretreated nitrate‐nitrogen content ranged from 432 to 590 mg/kg in the polluted samples (with a control at 522 mg/kg), while posttreatment concentrations were 3,285 ± 154 mg/kg and 3,254 ± 159 mg/kg for surface and subsurface soils, respectively. © 2007 Wiley Periodicals, Inc.  相似文献   

18.
Environmental assessment consists of scientific studies to define contamination at a potential release site or sites and to evaluate the risk posed to human health and the environment. These studies are performed within a prescribed regulatory framework. There is a high degree of uncertainty associated with preparing cost and schedule estimates for activities such as site characterization, risk assessment, and evaluation of remediation alternatives. This article describes the approach that Sandia National Laboratories is using to meet the challenge of estimating the assessment phase of its Environmental Restoration Project. Emphasis is placed on lessons learned, with examples given to illustrate the approach.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) and metal(loid) mass flux estimates and forensic assessment using PAH diagnostic ratios were used to inform remediation decision making at the Sydney Tar Ponds (STPs) and Coke Ovens cleanup project in eastern Canada. Environmental effects monitoring of surface marine sediments in Sydney Harbor indicated significantly higher PAH concentrations during the first year of remediation monitoring compared to baseline. This was equivalent to PAH loadings of ~2,000 kg over a 15‐month period. Increases in sediment PAH concentrations raised serious concerns for regulators, who requested cessation of remediation activities early in the $400 M (CAD) project. Historically, the STPs were reported as the primary source of PAH contamination in Sydney Harbor with estimated discharges of 300 to 800 kg/year between 1989 and 2001. Mass flux estimates of PAHs and metal(loid)s and PAH diagnostic ratios were used to evaluate if increases in PAH concentrations in marine sediments were the result of the STPs remediation activities. PAH mass flux estimates approximated that 17 to 97 kg/year were discharged from the STPs during three years of remediation and were corroborated by an independent PAH flux estimate of 119 kg in year 1. PAH fluxes to the Sydney Harbor were mostly surface water derived, with groundwater contributing negligible quantities (0.002–0.005 kg/year). Fluxes of metal(loid)s to harbor sediments were stable or declining across all years and were mirrored in sediment metal(loid) concentrations, which lacked temporal variation, unlike total PAH concentrations. Flux results were also corroborated using PAH diagnostic ratios, which found a common source of PAHs. Coal combustion was likely the principal source of PAHs and not migration from the STPs during remediation. Although short‐term residual sediment PAH increases during onset of remediation raised concerns for regulators, calls for premature cessation of remediation early in the project were unwarranted based on only one year of monitoring data. Mass flux estimates and forensic assessments using PAH diagnostic ratios proved useful tools to inform remediation decision making that helped environmental protection and reduced costs associated with lost cleanup time.  相似文献   

20.
At many sites, long‐term monitoring (LTM) programs include metals as chemicals of concern, although they may not be site‐related contaminants and their detected concentrations may be natural. At other sites, active remediation of organic contaminants in groundwater results in changes to local geochemical conditions that affect metal concentrations. Metals should be carefully considered at both types of sites, even if they are not primary contaminants of concern. Geochemical evaluation can be performed at LTM sites to determine if the monitored metals reflect naturally high background and, hence, can be removed from the analytical program. Geochemical evaluation can also be performed pre‐ and post‐treatment at active remediation sites to document the effects of organics remediation on metals and identify the processes controlling metal concentrations. Examples from both types of sites are presented in this article. © 2008 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号