首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
王光泽  曾薇  李帅帅 《环境科学》2021,42(10):4815-4825
本研究通过共浸渍-热解法开发了一种铈改性水葫芦生物炭吸附剂(Ce-BC),用以去除实际废水中的磷酸盐,考察了Ce-BC投加量、废水pH值、反应时间及共存的竞争性离子对吸附过程的影响.结果表明,当Ce-BC投加量为0.4 g·L-1,初始磷酸盐溶液pH值介于3~10时,Ce-BC对磷酸盐的吸附性能最佳,最大吸附量达到35.00 mg·g-1.Ce-BC对磷酸盐的吸附过程符合准二级动力学模型,并能在1 h内达到98%的磷酸盐去除率,吸附速率快.此外,Ce-BC具有较高的抗阴离子干扰能力,且具有良好的再生性能,Ce-BC经过4次再生后仍能保持90%以上的初始吸附效率.场发射扫描电镜-能量色散光谱(FESEM-EDS)、傅里叶红外光谱(FTIR)、X射线衍射光谱(XRD)和X射线光电子能谱(XPS)等表征结果表明,Ce-BC对磷酸盐的吸附机制主要包括配体交换和内球络合.本研究制备的Ce-BC吸附剂,可以有效去除及回收实际生活污水中的磷酸盐,在避免水体富营养化的同时实现磷资源的回收利用.  相似文献   

2.
不同热解条件下合成生物炭对铜离子的吸附动力学研究   总被引:6,自引:3,他引:6  
为了揭示生物质炭对铜离子的吸附动力学特性,研究了以不同条件下合成的生物质炭作为吸附剂吸附铜离子的动力学过程.用生活中常见的玉米芯和龙爪槐为原材料,以限氧升温炭化法制备生物炭.表征了其结构和表面特征,又通过一系列批实验,研究不同热解温度(300、400、500、600和700℃)和不同热解时间(1、2、4、6、8 h)的玉米芯与龙爪槐生物炭对Cu~(2+)的吸附动力学特征与机理.结果表明,生物炭对Cu~(2+)的吸附动力学数据随时间的变化能很好的用准二级动力学方程进行拟合,可见生物炭对Cu~(2+)的吸附是复杂的,不是单一的单层吸附.同时用颗粒内扩散模型、班厄姆方程和Boyd外扩散模型进行分析,结果表明颗粒内扩散不是两种生物炭吸附铜离子的唯一速率控制步骤,液膜扩散和颗粒内扩散均在吸附过程中起到重要影响,且液膜扩散是主要的限速因素.  相似文献   

3.
铁锰氧化物/生物炭复合材料对水中硝酸根的吸附特性   总被引:1,自引:0,他引:1  
热解经过氯化铁和高锰酸钾浸渍的小麦秸秆,制备铁锰金属氧化物/生物炭复合材料,用以去除水中硝酸根.通过X射线光电子能谱和扫描电镜分析,发现复合材料表面形成了Fe(Ⅲ)/Mn(Ⅳ)二元金属氧化物颗粒.制备优化结果表明,复合材料比表面积可达153.116 m2·g-1,零电荷点可达9.76.同时,还调查了固液比、溶液初始pH值和共存阴离子等因素的影响.研究发现,复合材料在溶液pH值1.00~9.05时对NO-3的去除率维持在75.40%~78.70%,且以配位交换为主要吸附机制.共存阴离子对吸附NO-3竞争吸附的影响顺序为:Cl-SO2-4PO3-4.等温吸附实验数据符合Langmuir方程,且最大吸附量为37.361 3 mg·g-1.吸附动力学分析发现,吸附过程遵循二级动力学方程,且以化学吸附为主.热动力学分析表明,吸附过程为自发吸热过程.上述结果说明铁锰氧化物/生物炭复合材料对于去除水中NO-3具有潜在价值.  相似文献   

4.
以荷叶为原料,以KOH为活化剂,制备了高比表面积的荷叶基生物炭,利用扫描电镜和氮气吸脱附仪对样品的微观形貌和微观结构进行了表征,并对该荷叶基生物炭对水中氟离子的吸附性能进行了考察。结果表明,该荷叶基生物炭的比表面积为704.5 m~2/g,孔容为0.38 cm~3/g;可以明显看到生物炭表面均匀分布的大孔孔道;在质量浓度为10 mg/L的氟离子溶液中,氟离子在荷叶基生物炭上的吸附基本达到平衡;每100 mL氟离子溶液中加入1 g荷叶基生物炭时,除氟效果最佳,对氟离子的吸附容量为0.85 mg/g;荷叶基生物炭吸附动力学符合准二级动力学模型。  相似文献   

5.
Ca/Mg负载改性沼渣生物炭对水中磷的吸附特性   总被引:3,自引:0,他引:3  
为处理含磷废水和实现沼渣资源化利用,将农业废弃物沼渣制备成生物炭(ZZs),通过Ca Cl2和MgCl2溶液对其进行浸渍改性,探究改性沼渣生物炭(CMZZs)对水体中磷的吸附特征.结果表明,改性后沼渣生物炭钙镁含量分别是改性前的1. 3和15. 4倍; SEM-EDS、BET、FTIR和XRD等测定表明,改性未改变生物炭表面化学官能团种类,但改性后生物炭出现新的衍射峰,与标准卡片对比后认为可能存在Mg(OH)_2、MgO等物质.当温度为303 K,溶液pH为9. 0时,CMZZs最大吸附量为76. 92 mg·g~(-1),是改性前的30. 1倍.等温吸附实验数据符合Freundlich方程,为多层吸附.吸附动力学分析发现,改性后生物炭在100 min内基本达到吸附平衡,吸附过程符合假二级动力学方程,以化学吸附为主.上述结果说明钙镁改性沼渣生物炭对于去除水中磷具有潜在价值.  相似文献   

6.
牛粪生物炭对水中氨氮的吸附特性   总被引:7,自引:14,他引:7  
以牛粪生物炭为吸附剂,研究了p H、粒径、投加量、温度和共存阳离子等因素对牛粪生物炭吸附氨氮的影响及吸附特性.结果表明,共存阳离子Na+、Ca2+的存在对牛粪生物炭吸附氨氮有抑制作用,在Na+、Ca2+浓度相同条件下对氨氮吸附影响大小顺序为Na+Ca2+;牛粪生物炭吸附氨氮的最佳初始p H值应在5~8范围;通过对动力学数据进行分析,发现准二级动力学方程(R2=0.967 3)比准一级动力学方程(R2=0.765 9)和Elovich方程(R2=0.724 9)能更好地拟合动力学数据,颗粒内扩散方程拟合结果发现牛粪生物炭对氨氮的吸附包括表面吸附和颗粒内扩散两个过程.吸附等温线拟合发现Freundlich方程(R2=0.976 2)能很好地描述氨氮在牛粪生物炭上的吸附行为.吉布斯自由能变化(ΔGθ)、焓变(ΔHθ)和熵变(ΔSθ)的计算结果表明,牛粪生物炭对氨氮的吸附是自发的吸热过程.  相似文献   

7.
粉煤灰对矿井水中重金属离子的吸附研究   总被引:11,自引:0,他引:11  
本文通过静态热力学实验的方法,研究了粉煤灰对矿井水中Pb^2+,Zn^2+,Cu62+等重金属离子的吸附性能。着重分析了PH值,吸附时间,粉煤灰活化程度等因素对其吸附能力的影响。  相似文献   

8.
以核桃青皮为原料,分别在300、500和700℃的条件下经过限氧热解制备了核桃青皮生物炭WP300、WP500和WP700,并应用于溶液中Pb2+、Cu2+和Cd2+的吸附去除.结果表明,中等热解温度下的WP500具有最高的重金属吸附性能,且在溶液初始pH为8时吸附效果最佳,对Pb2+、Cu2+和Cd2+的去除率分别为97.87%、99.78%和71.15%.不同吸附体系下所需的生物炭投加量不一致,在单一金属体系中,WP500对Pb2+、Cu2+和Cd2+的最佳投加量为1.3、2.1和1.9 g ·L-1,而在复合污染体系下,生物炭最佳投加量为5.1 g ·L-1.此外,在单一和复合重金属反应体系中,WP500对3种重金属的吸附量均呈现出Pb2+>Cu2+>Cd2+的规律,且在竞争吸附条件下,3种吸附质之间不存在协同或拮抗作用.等温吸附模型拟合结果显示,WP500对Pb2+、Cu2+和Cd2+的固定方式较为多元,而动力学拟合结果则证明了WP500与Pb2+、Cu2+和Cd2+之间主要是化学吸附.分析表明核桃青皮生物炭对3种重金属的吸附机制涉及孔隙填充、静电吸附、离子交换、矿物沉淀、官能团络合和π-π电子供体-受体相互作用.本研究为核桃青皮的资源化利用提供了一种新的视角.  相似文献   

9.
芦苇秸秆生物炭对水中菲和1,1-二氯乙烯的吸附特性   总被引:5,自引:9,他引:5  
在500℃热解温度下自制芦苇秸秆生物炭吸附剂,研究生物炭对水中两种典型有机污染物菲(PHE)和1,1-二氯乙烯(1,1-DCE)的吸附特性,探讨其吸附机制,并考察溶液p H和生物炭投加量对吸附效果的影响.结果表明,生物炭对PHE和1,1-DCE的吸附分别在60 min和480 min时达到平衡,最大去除率分别为81.87%和90.18%,两者的吸附动力学规律均符合准二级动力学方程,其中PHE的二级动力学吸附速率大于1,1-DCE,两者的吸附过程均由膜扩散和颗粒内扩散共同控制,且后者是主要限速步骤;两种有机污染物的等温吸附曲线均可用Freundlich方程描述,且生物炭对1,1-DCE的吸附亲和力强于PHE;PHE和1,1-DCE在生物炭上的吸附机制包括表面吸附作用和分配作用,且以表面吸附作用为主,其中1,1-DCE的表面吸附作用大于PHE,而其分配作用小于PHE,说明污染物性质中分子体积和相对极性是影响总体吸附的主要因素;红外图谱显示,含氧、含氢官能团及π—π相互作用对生物炭吸附两种有机污染物有重要贡献;溶液p H对生物炭吸附PHE和1,1-DCE的影响较小,而生物炭投加量从5增至50 mg时,PHE和1,1-DCE的平衡吸附量分别减少6.78倍和2.18倍,去除率分别提高20.21%和15.78%.  相似文献   

10.
生物吸附法去除重金属离子的研究进展   总被引:29,自引:13,他引:29  
本文对生物吸附去除重金属污染的研究和应用现状进行了综合评述.首先,介绍了细菌、真菌、藻类这3类研究较多的生物吸附剂,比较了它们对重金属离子的吸附容量,并简要介绍了一些新型的吸附剂.然后,讨论了生物吸附的影响因素、吸附机理、吸附剂的预处理和固定化、吸附等温式和吸附动力学模型等.最后,介绍了生物吸附法的应用情况.本文还展望了生物吸附法研究和应用的两个可能发展方向,一是利用包括生物吸附在内的多种工艺的综合技术,特别是利用活细胞来处理实际废水.二是开发出类似于离子交换树脂的商业化生物吸附剂,并努力开拓商业市场.  相似文献   

11.
孙婷婷  高菲  林莉  黎睿  董磊 《环境科学》2020,41(2):784-791
通过FeCl3和KMnO4溶液对果壳生物炭进行浸渍改性,探索复合改性生物炭(Fe:Mn=1:1)对低浓度磷的吸附性能.结果表明,铁锰复合改性生物炭对低浓度磷的吸附效果远远大于铁改性及锰改性; SEM和FT-IR测定表明,铁锰复合改性后生物炭表面可能存在铁锰氧化物和铁氢氧化物.在磷浓度为0. 5 mg·L-1、温度为298 K、固液比(mg∶L)为500时,吸附量为0. 96 mg·g-1.当溶液的pH为4~10,均具有较高的去除率和吸附量.等温吸附实验数据符合Freundlich方程,为多层吸附.吸附热力学研究表明,ΔGθ<0、ΔHθ> 0和ΔSθ> 0,说明该吸附是自发、熵增加的吸热过程.吸附动力学分析发现,改性后生物炭在60 min内基本达到吸附平衡,吸附过程符合准二级动力学方程,以化学吸附为主.可为天然水体和污水处理厂低浓度除磷提供理论数据支撑.  相似文献   

12.
改性污泥基生物炭的性质与重金属吸附效果   总被引:4,自引:4,他引:4  
为提高污泥基生物炭在高钙溶液体系中对重金属阳离子的吸附能力,将Fe2O3、MnO2、ZnO与市政污泥以质量比1 ∶10(以过渡金属元素质量计)混合共热解,制备改性生物炭;表征改性生物炭的组成、官能团分布和表面性质,考察其对典型重金属阳离子Cd2+的吸附效果.过渡金属氧化物可促进污泥的热解,改性生物炭的H/C原子比均低于0.31,碳链裂解脱氢更彻底.改性生物炭中Fe、Mn保留较好,分别主要以单质和氧化物形态存在;而Zn流失较多.改性生物炭中的孔隙以介孔为主,平均孔径约3.8 nm,比表面积在50 m2·g-1以上.初始浓度约200 mg·L-1的Cd2+溶液中,Ca2+初始浓度从0 mg·L-1升高到约200 mg·L-1,Fe改性生物炭对Cd2+的吸附容量从43.17 mg·g-1降至27.88 mg·g-1,但仍较未改性生物炭高10 mg·g-1以上,在含钙溶液体系中表现出了对Cd2+更强的吸附性能.Fe2O3较MnO2和ZnO对市政污泥基生物炭吸附重金属的强化效果更好.  相似文献   

13.
针对低浓度含氟水难处理,氟超标排放造成水污染等问题,制备了铝锆改性生物炭(AZBC),研究其对水体低浓度氟离子(F-)的吸附特性及吸附机制.结果表明,AZBC是具有均匀孔隙结构的介孔生物炭,能够快速吸附水体F-,可在20 min内达到吸附平衡.当初始ρ(F-)为10mg·L-1,AZBC投加量为30 g·L-1时,F-去除率为90.7%,出水浓度低于1mg·L-1.AZBC的pHpzc为8.9,推荐pH使用范围为3.2~8.9.其吸附动力学符合拟二级动力学,吸附过程符合Langmuir模型,在25、 35和45℃下的最大吸附量分别为8.91、 11.40和13.76mg·g-1.可用1mol·L-1 NaOH脱附F-,5次循环使用后,AZBC的吸附量下降约15.9%. AZBC的吸附机制为静电吸附和离子交换共同作用.以某工业园区污水厂污水为实验对象...  相似文献   

14.
纳米复合水凝胶的制备及其对重金属离子的吸附   总被引:1,自引:0,他引:1  
朱倩  李正魁  张一品  韩华杨  王浩 《环境科学》2016,37(8):3192-3200
以N-羟甲基丙烯酰胺(HMAm)和2-丙烯酸羟乙酯(HEA)为共聚单体,采用60Co-γ射线低温辐照法,制备了具酰胺基和羟基的新型聚合物水凝胶p(HMAm/HEA),运用原位沉淀法制备了纳米复合水凝胶HMO-p(HMAm/HEA),用于对重金属离子Pb~(2+)和Cu~(2+)的去除.应用SEM、TEM、FTIR等方法对水凝胶进行表征,表征结果证明p(HMAm/HEA)是HMAm和HEA的共聚产物,且纳米水合氧化锰(HMO)成功负载.探讨了溶液初始p H值、反应温度、重金属初始浓度、反应时间、竞争性Ca~(2+)和Na+浓度等因素对纳米复合水凝胶吸附过程的影响,研究表明HMO-p(HMAm/HEA)对Pb~(2+)和Cu~(2+)的吸附过程不受温度的影响;吸附量随着溶液初始p H的升高而增加;吸附过程属于Langmuir单分子层吸附;吸附动力学过程符合准二级动力学吸附;高浓度的Ca~(2+)和Na~+对吸附过程影响不大.XPS图谱进一步证明吸附机制是重金属离子与羟基间的离子交换作用.采用0.05 mol·L~(-1)的HCl溶液为脱附剂,经过4次吸附-脱附循环再生后,纳米复合水凝胶重复利用性好.  相似文献   

15.
以玉米秸秆为原料热裂解制备生物炭,利用二乙烯三胺和二硫化碳,通过酸化氧化,曼妮希反应胺基改性、二硫化碳巯基取代对生物炭进行胺硫双基团改性,研究胺硫改性生物炭(BC-SN)对Pb2+、Ni2+及Cd2+在单一和三元体系下的吸附特性和吸附稳定性.表征分析证实了生物炭表面胺硫双基团改性成功,且具有比表面积大、表面官能团丰富的...  相似文献   

16.
生物炭作为新型吸附剂在工业废水处理领域受到关注,该材料因良好的孔隙结构和广泛的原料来源,展现出较好吸附性能和潜在经济实用价值。文章为了探讨生物炭水泥基复合材料固化处理废水中重金属离子的可能性,选择4种常见的农业废弃生物质制备出的生物炭以不同掺量(1%、3%、5%、8%)替代水泥制备出水泥净浆试块,研究了不同水泥生物炭配比下所制得水泥净浆试块的力学性能和重金属浸出毒性,试验结果表明:掺入1%的生物炭能提高水泥的强度约10%,掺量超过5%将降低其力学性能。掺入4种不同材料生物炭之后,水泥基材料对重金属离子的固化效果均得到明显增强,pH值较高的玉米棒生物炭具有更好的增强效果,固化率可达99%以上。  相似文献   

17.
传统生物炭材料对水中氨氮(NH+4-N)的吸附效果不佳.以生物炭为载体负载纳米零价铁制得生物炭基纳米零价铁复合吸附剂nZVI@BC,通过吸附实验,考察nZVI@BC对NH+4-N的吸附特性,并采用SEM-EDS、 BET、 XRD和FTIR分析nZVI@BC的组成和结构特性,探讨nZVI@BC吸附NH+4-N的主要机制.结果表明,在298K下铁/生物炭质量比为1∶30时制备的复合吸附剂(nZVI@BC1/30)对NH+4-N的吸附性能最佳,比负载前生物炭的吸附量提高了45.96%,饱和吸附量可达16.60 mg·g-1.伪二级动力学模型和Langmuir模型更符合nZVI@BC1/30对NH+4-N的吸附过程.共存阳离子与NH+4-N之间存在竞争吸附,其对nZVI@BC1/30吸附NH+  相似文献   

18.
以山羊粪便为原料,在300℃和700℃缺氧热解条件下制备生物炭,分别记为D300和D700。使用扫描电镜表征生物炭结构特征,运用比表面积仪测定其比表面积和孔径大小,以此探究不同热解温度条件下羊粪生物炭的内部结构及比表面积特征。以水体氨氮(20 mol/L)为目标污染物,以D300和D700为吸附剂,研究不同氨氮浓度、温度、pH以及吸附剂投加量等因素对水体氨氮吸附的影响以及吸附特性。结果表明:热解温度从300℃上升到700℃,生物炭的比表面积、总孔容随之增大,平均孔径反之减小,吸附效率从15.72%提升到24.73%。羊粪生物炭吸附水体氨氮的最佳pH在6~8;通过对动力学数据进行分析,发现准二级动力学方程(R~2=0.999 1)比准一级动力学方程(R~2=0.663 3)能更好地拟合动力学数据。吸附等温曲线拟合发现Langmuir方程(R~2=0.842 74)能更好地描述氨氮在羊粪生物炭上的吸附行为。吉布斯自由能变化、焓变和熵变的计算结果表明:羊粪生物炭对氨氮的吸附过程是自发的吸热过程。700℃条件下制备的羊粪生物炭比D300拥有更好的吸附性能。  相似文献   

19.
对改性板栗壳吸附Cr(VI)、Cu(II)及Ni(II)3种重金属离子过程的动力学和热力学进行研究。结果表明:改性板栗壳吸附Cr(VI)、Cu(II)和Ni(II)3种混合离子时存在拮抗的竞争关系,竞争吸附顺序为Cu(II)﹤Ni(II)﹤Cr(VI);与单独吸附过程相比,混合吸附平衡时,改性板栗壳对3种离子相应的去除率均有所降低,Cr(VI)去除率比单独吸附时降低20.2%,Cu(II)和Ni(II)分别降低40.7%和35.6%;拟二级动力学方程能很好地描述Cr(VI)、Cu(II)和Ni(II)在改性板栗壳上的单独和混合吸附过程,结果表明此3种重金属离子在改性板栗壳表面以化学吸附为主;热力学研究数据表明:改性板栗壳对Cr(VI)的吸附为吸热反应,对Cu(II)和Ni(II)的吸附为放热反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号