首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dose-response studies with ethylenediurea (EDU) and radish   总被引:1,自引:0,他引:1  
There is some concern that the antiozonant ethylenediurea (EDU), used for crop loss assessment due to ambient ozone (O3) may per se affect plant growth and yield. In view of this, and to provide knowledge for later field experiments, dose-response studies with EDU and O3 were carried out in greenhouses in winter and spring 1989, using radish (Raphanus sativus L.) cv. 'Cherry Belle' and 'Red Prince', grown in two different substrates. EDU was applied as a single or repeated soil drench in concentrations ranging from 300 to 800 mg litre(-1) in the first, and from 100 to 400 mg litre(-1) in the second trial. In the second experiment, plants were exposed to a chronic level of O3, mimicking ambient patterns, or to filtered air after the EDU-treatment. When applied in concentrations above 300 mg litre(-1), EDU reduced growth, thereby affecting the development of the thickened hypocotyl far more than the shoot growth that was partially stimulated by lower doses of EDU. Phytotoxic symptoms on the leaves, attributable to EDU, were observed at concentrations above 200 mg litre(-1), but complete protection from visible O3-injury was provided by a single application of EDU at a concentration as low as 100 mg litre(-1). Significant interactions on growth characters measured between O3-exposure and EDU application were observed only in one of the substrates. While these results demonstrate the need for careful dose-response studies prior to field assessments, they also provide evidence of a dosage that is effective in protecting radish from O3 damage without interfering with plant growth itself.  相似文献   

2.
Empirical records provide incontestable evidence of global changes: foremost among these changes is the rising concentration of CO(2) in the earth's atmosphere. Plant growth is nearly always stimulated by elevation of CO(2). Photosynthesis increases, more plant biomass accumulates per unit of water consumed, and economic yield is enhanced. The profitable use of supplemental CO(2) over years of greenhouse practice points to the value of CO(2) for plant production. Plant responses to CO(2) are known to interact with other environmental factors, e.g. light, temperature, soil water, and humidity. Important stresses including drought, temperature, salinity, and air pollution have been shown to be ameliorated when CO(2) levels are elevated. In the agricultural context, the growing season has been shortened for some crops with the application of more CO(2); less water use has generally, but not always, been observed and is under further study; experimental studies have shown that economic yield for most crops increases by about 33% for a doubling of ambient CO(2) concentration. However, there are some reports of negligible or negative effects. Plant species respond differently to CO(2) enrichment, therefore, clearly competitive shifts within natural communities could occur. Though of less importance in managed agro-ecosystems, competition between crops and weeds could also be altered. Tissue composition can vary as CO(2) increases (e.g. higher C: N ratios) leading to changes in herbivory, but tests of crop products (consumed by man) from elevated CO(2) experiments have generally not revealed significant differences in their quality. However, any CO(2)-induced change in plant chemical or structural make-up could lead to alterations in the plant's interaction with any number of environmental factors-physicochemical or biological. Host-pathogen relationships, defense against physical stressors, and the capacity to overcome resource shortages could be impacted by rises in CO(2). Root biomass is known to increase but, with few exceptions, detailed studies of root growth and function are lacking. Potential enhancement of root growth could translate into greater rhizodeposition, which, in turn, could lead to shifts in the rhizosphere itself. Some of the direct effects of CO(2) on vegetation have been reasonably well-studied, but for others work has been inadequate. Among these neglected areas are plant roots and the rhizosphere. Therefore, experiments on root and rhizosphere response in plants grown in CO(2)-enriched atmospheres will be reviewed and, where possible, collectively integrated. To this will be added data which have recently been collected by us. Having looked at the available data base, we will offer a series of hypotheses which we consider as priority targets for future research.  相似文献   

3.
The projected doubling of current levels of atmospheric carbon dioxide concentration ([CO(2)]) during the next century along with increases in other radiatively active gases have led to predictions of increases in global air temperature and shifts in precipitation patterns. Additionally, stratospheric ozone depletion may result in increased ultraviolet-B (UV-B) radiation incident at the Earth's surface in some areas. Since these changes in the Earth's atmosphere may have profound effects on vegetation, the objectives of this paper are to summarize some of the recent research on plant responses to [CO(2)], temperature and UV-B radiation. Elevated [CO(2)] increases photosynthesis and usually results in increased biomass, and seed yield. The magnitude of these increases and the specific photosynthetic response depends on the plant species, and are strongly influenced by other environmental factors including temperature, light level, and the availability of water and nutrients. While elevated [CO(2)] reduces transpiration and increases photosynthetic water-use efficiency, increasing air temperature can result in greater water use, accelerated plant developmental rate, and shortened growth duration. Experiments on UV-B radiation exposure have demonstrated a wide range of photobiological responses among plants with decreases in photosynthesis and plant growth among more sensitive species. Although a few studies have addressed the interactive effects of [CO(2)] and temperature on plants, information on the effects of UV-B radiation at elevated [CO(2)] is scarce. Since [CO(2)], temperature and UV-B radiation may increase concurrently, more research is needed to determine plant responses to the interactive effects of these environmental variables.  相似文献   

4.
BACKGROUND AND OBJECTIVES: Among the factors affecting the environmental fate of surface-applied pesticides several biological as well as abiotic factors, such as volatilization and photochemical transformations are of particular interest. Whereas reliable measurement methods and models for estimating direct photodegradation are already available for the compartments of water and atmosphere and individual subprocesses have already been described in detail, there is still a need for further elucidation concerning the key processes of heterogeneous photodegradation of environmental chemicals on surfaces. METHODS: In order to systematically examine the direct and indirect photodegradation of 14C-labeled pesticides on various surfaces and their volatilization behavior, a new laboratory device ('photovolatility chamber') was designed according to US EPA Guideline 161-3. Model experiments under controlled conditions were conducted investigating the impact of different surfaces, i.e. glass, soil dust and radish plants, and environmental factors, i.e. irradiation and atmospheric ozone (O3), on the photodegradation and volatilization of surface-deposited [phenyl-UL-14C]parathion-methyl (PM). RESULTS AND DISCUSSION: Depending on the experimental conditions, parathion-methyl was converted to paraoxon-methyl, 4-nitrophenol, unknown polar products and 14CO2. With respect to the direct photodegradation of PM (experiments without O3), the major products were polar compounds and 14CO2, due to the rapid photochemical mineralization of 4-nitrophenol to 14CO2. Paraoxon-methyl and 4-nitrophenol formation was mainly mediated by the combination of light, O3, and *OH radicals. In radish experiments PM photodegradation was presumably located in the cuticle compartment, which exhibited a sensitized photodegradation, as more unknown products were yielded compared to the glass and soil dust experiments. This could be explained by intensifying the inherent PM degradation in the dark with the same product spectrum. Due to photochemical product formation, which is an antagonistic process to the volatilization of parent compound, the volatilization of unaltered parathion-methyl from each surface generally decreased in the presence of light, particularly in combination with increasing O3 concentrations and *OH radical production rates. CONCLUSION: First results demonstrated that the photovolatility chamber provides a special tool for the systematic evaluation of (a) photodegradation of surface-located pesticide residues, i.e. measuring qualitative aspects of direct and indirect photodegradation together with relative photodegradation rates, and (b) volatilization of pesticides on surfaces by including and optionally varying relevant parameters such as light, atmospheric O3 concentration, surface temperature, air temperature, air flow rate. OUTLOOK: The experimental facility represents an important complement to lysimeter and field studies, in particular for experiments on the volatilization of pesticides using the wind tunnel system. With the photovolatility chamber special experiments on photodegradation, volatilization and plant uptake can be conducted to study key processes in more detail and this will lead to a better understanding of the effects of certain environmental processes on the fate of released agrochemicals contributing to an improved risk assessment.  相似文献   

5.
Two successive experiments were performed in the greenhouse to test the hypothesis that plant response to the amounts and ratios of sulfuric and nitric acids in rain is affected by the amount of fertilizer added to the growing medium. Radish plants, grown with different levels of N?P?K fertilizer, were given ten 1-h exposures over a 3-week period to simulate acidic rain at pH values from 2.6 to 5.0 and sulfate to nitrate mass ratios from 0.3 to 7.5. Increased acidity of simulated rain reduced plant growth, with a greater depression of hypocotyl mass than shoot mass. The reverse growth response occurred with increased supply of fertilizer: plant biomass rose with a larger increase in shoot mass than hypocotyl mass. In one experiment, plants that received a greater supply of fertilizer exhibited more obvious reductions in growth of hoots at the higher levels of acidity of simulated rain. There were no significant effects of sulfate to nitrate ratios in simulated rain on plant growth, nor any effect of this ratio on the response of shoots and hypocotyls to acidity of simulated rain. Addition of fertilizer had no effect on plant response to sulfate to nitrate ratios. These results do not support the hypothesis that nutrient-deficient plants are either more or less responsive to sulfate and nitrate in rain than plants grown with optimal supplies of nutrients. They support previous results indicating no effects of sulfate to nitrate ratio in simulated acidic rain on plant growth. The results also suggest that the greatest risk of harmful effects on vegetation may come from the combination of high sulfate and high acidity in rainfall.  相似文献   

6.
Potted plants of radish (Raphanus sativus L., cv. Cherry Belle) were grown in the ambient air for 5 weeks, with or without the application of a soil drench of the anti-ozonant ethylenediurea (EDU). The 24-h mean ozone concentration during the experimental period was 31 nl l(-1). Towards the end of the experiment two ozone episodes, with maximum concentrations around 70 and 115 nl l(-1), occurred. No visible injury that could be attributed to ozone was observed on any of the plants. Shoot and hypocotyl biomass were significantly lower in the non-EDU-treated plants than in the EDU-treated plants. The non-EDU-treated plants had a 32% lower hypocotyl biomass and a 22% lower shoot biomass. The shoot:hypocotyl ratio of the non-EDU-treated plants was higher than that of the EDU-treated plants, although the difference was not statistically significant. EDU treatment increased the leaf area and decreased the chlorophyll content of the leaves. These differences were, however, not statistically significant. It is suggested that the ambient rural ozone climate in southern Sweden has the potential to decrease biomass production in Cherry Belle radishes in the absence of visible injury.  相似文献   

7.
During the growing season of 1990, five staggered crops of radish (Raphanus sativus L.) were grown in the field, using the cultivars 'Cherry Belle', 'Red Prince', and 'Red Devil B'. Half of the plants received a soil drench (100 ml plant(-1); 100 mg litre(-1) of ethylenediurea (EDU) once, early in plant development. Destructive harvests were carried out at 2-day intervals during vegetative development. Non-linear growth kinetics, derived from Richards' function, were fitted to the dry weight data of the total plant, main organs (shoot and hypocotyl) and to the dry weight ratio between below-ground and above-ground organs. Estimating the parameters of these non-linear functions and testing their differences between EDU-treated and untreated plants unveiled biologically meaningful information on the impact of different levels of ambient ozone (O(3)) during the growth periods. The modified function which was applied to the data of biomass partitioning between the major plant parts was more powerful in detecting transient alterations in assimilate allocation compared to the growth dynamics of individual plant organs. At low levels of O(3), biomass partitioning towards the below-ground sink organs was slightly delayed and finally restricted in EDU-treated plants. When ambient O(3) reached moderate levels, which did not cause visible foliar injury, assimilate partitioning between organs was only insignificantly altered during early growth when EDU-treatments were compared. As growth progressed, however, less assimilates were allocated towards the hypocotyl and roots in the plants not protected by EDU. This pattern was similar in all cultivars tested, but was smallest in 'Cherry Belle', which is known to be sensitive to O(3) with respect to foliar injury. During the 15- to 19-day periods of rapid growth, the O(3)-exposure >80 nl litre(-1) ranged from 0.015 to 0.209 microl litre(-1) O(3) h, which corresponds to 7 h d(-1) mean values between 40 and 50 nl litre(-1) O(3), confirming that ambient ozone did not exceed a moderate level in this study.  相似文献   

8.
Spring wheat (Triticum aestivum L. cv. Minaret) was grown at two different CO2 concentrations (367 and 650 micromol mol(-1)) in open-top-chambers from sowing until final harvest. Furthermore two different watering treatments (well watered and water stressed) and two soil types of different fertility were used. At final harvest, which took place at growth stage 92, plants were separated into different fractions. Elevated atmospheric CO2 caused an accelerated chlorophyll-a breakdown and increased growth and yield. Total shoot biomass was enhanced by 43%, grain yield by 46% and main stem yield by 19%. Water stress also accelerated chlorophyll-a breakdown but reduced total shoot biomass by 40%, grain yield by 45%, main stem yield by 30% and thousand grain weight by 6%. On average, soil fertility altered shoot biomass by 30%, grain yield by 39% and main stem yield by 25%.  相似文献   

9.
Many single environmental conditions or stresses have been evaluated with respect to formation and survival of ectomycorrhizae (EM). Current interests in atmospheric change include plant responses to pollutants such as ozone, sulfur dioxide, and acidic deposition in the presence of additional stress such as water deficit or plant disease. Stresses that result in formation of fewer EM or death of fine roots are evaluated routinely by quantifying EM, and results are often correlated with parameters that describe host physiology and growth. However, effects of stresses may be subtle, or identification of early plant responses may be desired. In such cases, quantification of EM may not reveal changes in EM formation by individual species of fungi if roots are colonized by other species with no net change in total numbers. Differences among frequencies of morphotypes suggest changes in species diversity of EM-forming fungi. Although the relative benefits of individual species to the host are largely unknown, information provided by qualitative assessment of EM may offer insight to define plant responses to stress and suggest additional research related to benefits of individual EM-forming fungi.  相似文献   

10.
The effects of CO(2) enrichment and O(3) induced stress on wheat (Triticum aestivum L.) and corn (Zea mays L.) were studied in field experiments using open-top chambers to simulate the atmospheric concentrations of these two gases that are predicted to occur during the coming century. The experiments were conducted at Beltsville, MD, during 1991 (wheat and corn) and 1992 (wheat). Crops were grown under charcoal filtered (CF) air or ambient air + 40 nl liter(-1) O(3) (7 h per day, 5 days per week) having ambient CO(2) concentration (350 microl liter(-1) CO(2)) or + 150 microl liter(-1) CO(2) (12 h per day.). Averaged over O(3) treatments, the CO(2)-enriched environment had a positive effect on wheat grain yield (26% in 1991 and 15% in 1992) and dry biomass (15% in 1991 and 9% in 1992). Averaged over CO(2) treatments, high O(3) exposure had a negative impact on wheat grain yield (-15% in 1991 and -11% in 1992) and dry biomass (-11% in 1991 and -9% in 1992). Averaged over CO(2) treatments, high O(3) exposure decreased corn grain yield by 9%. No significant interactive effects were observed for either crop. The results indicated that CO(2) enrichment had a beneficial effect in wheat (C(3) crop) but not in corn (C(4) crop). It is likely that the O(3)-induced stress will be diminished under increased atmospheric CO(2) concentrations; however, maximal benefits in crop production in wheat in response to CO(2) enrichment will not be materialized under concomitant increases in tropospheric O(3) concentration.  相似文献   

11.
CO(2) enrichment is expected to alter leaf demand for nitrogen and phosphorus in plant species with C(3) carbon dioxide fixation pathway, thus possibly causing nutrient imbalances in the tissues and disturbance of distribution and redistribution patterns within the plants. To test the influence of CO(2) enrichment and elevated tropospheric ozone in combination with different nitrogen supply, spring wheat (Tritium aestivum L. cv. Minaret) was exposed to three levels of CO(2) (361, 523, and 639 microl litre(-1), 24 h mean from sowing to final harvest), two levels of ozone (28.4 and 51.3 nl litre(-1)) and two levels of nitrogen supply (150 and 270 kg ha(-1)) in a full-factorial design in open-top field chambers. Additional fertilization experiments (120, 210, and 330 kg N ha(-1)) were carried out at low and high CO(2) levels. Macronutrients (N, P, K, S, Ca, Mg) and three micronutrients (Mn, Fe, Zn) were analysed in samples obtained at three different developmental stages: beginning of shoot elongation, anthesis, and ripening. At each harvest, plant samples were separated into different organs (green and senescent leaves, stem sections, ears, grains). According to analyses of tissue concentrations at the beginning of shoot elongation, the plants were sufficiently equipped with nutrients. Elevated ozone levels neither affected tissue concentrations nor shoot uptake of the nutrients. CO(2) and nitrogen treatments affected nutrient uptake, distribution and redistribution in a complex manner. CO(2) enrichment increased nitrogen-use efficiency and caused a lower demand for nitrogen in green tissues which was reflected in a decrease of critical nitrogen concentrations, lower leaf nitrogen concentrations and lower nitrogen pools in the leaves. Since grain nitrogen uptake during grain filling depended completely on redistribution from vegetative pools in green tissues, grain nitrogen concentrations fell considerably with severe implications for grain quality. Ca, S, Mg and Zn in green tissues were influenced by CO(2) enrichment in a similar manner to nitrogen. Phosphorus concentrations in green tissues, on the other hand, were not, or only slightly, affected by elevated CO(2). In stems, 'dilution' of all nutrients except manganese was observed, caused by the huge accumulation of water soluble carbohydrates, mainly fructans, in these tissues under CO(2) enrichment. Whole shoot uptake was either remarkably increased (K, Mn, P, Mg), nearly unaffected (N, S, Fe, Zn) or decreased (Ca) under CO(2) enrichment. Thus, nutrient cycling in plant-soil systems is expected to be altered under CO(2) enrichment.  相似文献   

12.
The term 'global climate change' encompasses many physical and chemical changes in the atmosphere that have been induced by anthropogenic pollutants. Increases in concentrations of CO2 and CH4 enhance the 'greenhouse effect' of the atmosphere and may contribute to changes in temperature and precipitation patterns at the earth's surface. Nitrogen oxides and SO2 are phytotoxic and also react with other pollutants to produce other phytotoxins in the troposphere such as O3 and acidic substances. However, release of chlorofluorocarbons into the atmosphere may cause depletion of stratospheric O3, increasing the transmittance of ultraviolet-B (UV-B) radiation to the earth's surface. Increased intensities of UV-B could affect plants and enhance photochemical reactions that generate some phytotoxic pollutants. The role of mycorrhizae in plant responses to such stresses has received little attention. Although plans for several research programs have acknowledged the importance of drought tolerance and soil fertility in plant responses to atmospheric stresses, mycorrhizae are rarely targeted to receive specific investigation. Most vascular land plants form mycorrhizae, so the role of mycorrhizae in mediating plant responses to atmospheric change may be an important consideration in predicting effects of atmospheric changes on plants in managed and natural ecosystems.  相似文献   

13.
This paper reports the effect of twice-ambient (700 ppm) atmospheric CO(2) concentration on infection, disease development, spore production and dispersal of the anthracnose pathogen Colletotrichum gloeosporioides in susceptible (Fitzroy) and partially resistant (Seca) cultivars of the tropical pasture legume Stylosanthes scabra under controlled environment and field conditions. Reduction in plant height due to anthracnose was partially compensated for by growth enhancement at elevated CO(2) in Fitzroy but not in Seca. Anthracnose severity was reduced under elevated CO(2) although the reduction was only significant in Fitzroy. Delayed and reduced germination, germtube growth and appressoria production were partly responsible for the reduced severity. Despite an extended incubation period, C. gloeosporioides developed sporulating lesions faster and produced more spores per day within the same latent period at high CO(2) and ambient CO(2). When Fitzroy seedlings grown at 700 ppm CO(2) were exposed to pathogen inoculum under field conditions, they consistently developed more severe anthracnose with more lesions than seedlings grown at ambient CO(2). The environmental variable, which correlated most strongly with the dispersal and infection of C. gloeosporioides spores in the field, was relative humidity in plant canopy. We have shown that an enlarged Stylosanthes canopy under elevated CO(2) can trap more spores, which can lead to more severe anthracnose under favorable weather. The implications of these findings for perennial Stylosanthes pastures are discussed.  相似文献   

14.
Pests and diseases reduce yields to lower levels than those that could have been potentially obtained, given the restrictions of climate, nutrients and crop varieties. Climatic change not only affects the potential yield levels, but it may also modify the effects of pests and diseases. Modelling can serve as a tool to integrate these processes, ranging from simple removal of plant material to subtle toxic and hormonal effects. Modelling can help to quantify different modes of action such as on photosynthesis, root activity, assimilate partitioning, morphology, and their interactions. As to climatic change, little is known about pests, diseases and weeds. If climatic change causes a gradual shift of agricultural regions, crops and their associated pests, diseases and weeds will migrate together, though at different rates maybe. To a limited extent, new outbreaks can be foreseen given the changed environmental conditions. Methodology is available, and some interesting results are on record. Specific changes such as an increase in the CO(2) content in the air and in UV radiation are not likely to have large effects. Increasing atmospheric CO(2) reduces crop nitrogen content, which may retard many pests and diseases, and change the composition of the weed flora which accompanies crops. Some cautionary remarks are made to avoid jumping to conclusions.  相似文献   

15.
Study on active and labile carbon-pools can serve as a clue for soil organic carbon dynamics on exposure to elevated level of CO2. Therefore, an experimental study was conducted in a Typic Haplustept in sub-tropical semi-arid India with wheat grown in open top chambers at ambient (370 micromol mol-1) and elevated (600 micromol mol-1) concentrations of atmospheric CO2. Elevated atmospheric CO2 caused increase in yield and carbon uptake by all plant parts, and their preferential partitioning to root. Increases in fresh root weight, volume and length have also been observed. Relative contribution of medium-sized root to total root length increased at the expense of very fine roots at elevated CO2 level. All active carbon-fractions gained due to elevated atmospheric CO2 concentration, and the order followed their relative labilities. All the C-pools have recorded a significant increase over initial status, and are expected to impart short-to-medium-term effect on soil carbon sequestration.  相似文献   

16.
Because of their prominent role in global biomass productivity, as well as their complex structure and function, forests and tree species deserve particular attention in studies on the likely impact of elevated atmospheric CO2 on terrestrial vegetation. Poplar (Populus) has proven to be an interesting study object due to its fast response to a changing environment, and the growing importance of managed forests in the carbon balance. Results of both chamber and field experiments with different poplar species and hybrids are reviewed in this contribution. Despite the variability between experiments and species, and the remaining uncertainty over the long term, poplar is likely to profit from a rising atmospheric CO2 concentration with a mean biomass stimulation of 33%. Environmental conditions and pollutants (e.g. O3) may counteract this stimulation but with managed plantations, environmental constraints might not occur. The predicted responses of poplar to rising atmospheric CO2 have implications for future forest management and the expected forest carbon sequestration.  相似文献   

17.
The single and combined effects of ozone (O(3)) and Fusarium oxysporum on growth and disease expression of soybean genotypes differing in foliar sensitivity to O(3) were studied in the greenhouse. O(3) had no effect on root and hypocotyl rot severity of PI 153.283 (O(3)-sensitive, S) or PI 189.907 (O(3)-tolerant, T) maturity group I soybean lines. Plants of both genotypes infected with F. oxysporum and exposed to O(3) had greater reductions in relative growth rate (RGR), net assimilation rate (NAR), and had more stippled leaves per plant than Fusarium-free plants exposed to O(3). O(3) alone had a greater impact on shoot dry weight, RGR, and NAR of PI 153.283 (S) than of PI 189.907 (T). O(3) alone reduced shoot and root dry weights primarily through a depression in NAR and less through reduced leaf area. F. oxysporum alone reduced root dry weight at 35 days; however, infected plants responded with increases in root dry weight from 49 to 63 days. Similarly, F. oxysporum alone lowered early RGR but subsequent RGR decline was less rapid while NAR remained high, particularly during later sampling intervals. Infection by F. oxysporum that causes root and hypocotyl rot increased soybean sensitivity to O(3) by prolonging active vegetative growth.  相似文献   

18.
Nitrogen fertility and abiotic stresses management in cotton crop: a review   总被引:1,自引:0,他引:1  
This review outlines nitrogen (N) responses in crop production and potential management decisions to ameliorate abiotic stresses for better crop production. N is a primary constituent of the nucleotides and proteins that are essential for life. Production and application of N fertilizers consume huge amounts of energy, and excess is detrimental to the environment. Therefore, increasing plant N use efficiency (NUE) is important for the development of sustainable agriculture. NUE has a key role in crop yield and can be enhanced by controlling loss of fertilizers by application of humic acid and natural polymers (hydrogels), having high water-holding capacity which can improve plant performance under field conditions. Abiotic stresses such as waterlogging, drought, heat, and salinity are the major limitations for successful crop production. Therefore, integrated management approaches such as addition of aminoethoxyvinylglycine (AVG), the film antitranspirant (di-1-p-menthene and pinolene) nutrients, hydrogels, and phytohormones may provide novel approaches to improve plant tolerance against abiotic stress-induced damage. Moreover, for plant breeders and molecular biologists, it is a challenge to develop cotton cultivars that can tolerate plant abiotic stresses while having high potential NUE for the future.  相似文献   

19.
Continuous carbon dioxide (CO2) measurements over the period 2004-2005 for a rural area in the upper Spanish plateau were examined to characterize the influence of sources and sinks. The diurnal pattern and the annual cycle are presented. The baseline CO2 levels over the time frames researched are determined so as to achieve a more accurate verification of the ambient conditions when uptake is deployed at the site. The results reveal a mean concentration of 384.2 ppm, with 9.8-ppm variability. The mean maximum concentration levels at night, 4:00 a.m. Greenwich Mean Time (GMT), are 390.7 ppm, mainly when atmospheric stability increased. Moreover, mean CO2 levels increase in spring, peaking in May at 388.5 ppm. Concentrations then decline in summer and again increase in autumn, reaching a similar mean value in December. The results also show consistency with vegetation and crop growth, as well as the influence of meteorological conditions, soil features, and human activity in the area. Minimum and maximum CO2 concentrations present a similar but opposite variation, 4.4 ppm x yr(-1), with values decreasing in the latter. Diurnal variation is more pronounced during the growing season and higher in 2004, partly because of abundant rainfall. The lower daily amplitudes in the remaining months are attributed to the reduction in plant and soil respiration processes. The influence of wind on CO2 concentrations has enabled us to identify the contribution of emissions from the cities of Valladolid and Palencia. An increase in mean CO2 concentrations was observed in the, east-southeast, southeast, south-southeast, and south sectors for the former city, and north and east for the latter. The ratio of CO2 increase in the wind sectors influenced by these sources yielded a factor of 1.2 with respect to the relationship between the populations of the two cities.  相似文献   

20.

The present study determines the influence of three ionic liquids (ILs) containing cations with diversified structure on the growth and development of spring barley seedlings and common radish leaves. Increasing amounts of 1-butyl-1-methylpyrrolidinium hexafluorophosphate [Pyrrol][PF6], 1-butyl-1-methylpiperidinium hexafluorophosphate [Piper][PF6], and 1-butyl-4-methylpyridinium hexafluorophosphate [Pyrid][PF6] were added to the soil on which both plants were cultivated. The results of this studies showed that the applied ILs were highly toxic for plants, demonstrated by the inhibition of length of plant shoots and roots, decrease of fresh mass, and increase of dry weight content. Common radish turned out to be the plant with higher resistance to the used ILs. The differences in the cation structure did not influence phytotoxity of ILs for spring barley. Furthermore, all ILs led to a decrease of photosynthetic pigments, which was directly followed by decreased primary production in plants. Oxidative stress in plants occurred due to the presence of ILs in the soil, which was demonstrated by the increase of malondialdehyde (MDA) content, changes in the H2O2 level, and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). The changes in the chlorophyll contents and the increase of POD activity turned out to be the most significant oxidative stress biomarkers in spring barley and common radish. Both spring barley and radish exposed to ILs accumulated a large amount of fluoride ion.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号