首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L−1?h−1 for Cu(II) at an initial concentration of 50 mg?L−1 and 5.3±0.4 mg?L−1 h−1 for Co(II) at an initial 40 mg?L−1 were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L−1?h−1) and Co(II) (6.4 mg?L−1?h−1) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol−1 COD). Phylogenetic analysis on the biocathodes indicates Proteobacteria dominantly accounted for 67.9% of the total reads, followed by Firmicutes (14.0%), Bacteroidetes (6.1%), Tenericutes (2.5%), Lentisphaerae (1.4%), and Synergistetes (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.  相似文献   

2.
As low oxygen and high ultraviolet (UV) exposure might significantly affect the microbial existence in plateau, it could lead to a specialized microbial community. To determine the abundance and distribution of ammonia-oxidizing archaea (AOA) in agricultural soil of plateau, seven soil samples were collected respectively from farmlands in Tibet and Yunnan cultivating the wheat, highland-barley, and colza, which are located at altitudes of 3200-3800 m above sea level. Quantitative PCR (q-PCR) and clone library targeting on amoA gene were used to quantify the abundances of AOA and ammonia-oxidizing bacteria (AOB), and characterize the community structures of AOA in the samples. The number of AOA cells (9.34 × 10^7-2.32× 10^8 g^-1 soil) was 3.86-21.84 times greater than that of AOB cells (6.91 × 10^6-1.24 × 10^8 g^-1 soil) in most of the samples, except a soil sample cultivating highland- barley with an AOA/AOB ratio of 0.90. Based Kendall's correlation coefficient, no remarkable correlation between AOA abundance and the environmental factor was observed. Additionally, the diversities of AOA community were affected by total nitrogen and organic matter concentration in soils, suggesting that AOA was probably sensitive to several environmental factors, and could adjust its community structure to adapt to the environmental variation while maintaining its abundance.  相似文献   

3.
《Chemistry and Ecology》2007,23(5):409-425
The use of a new sorbent developed from the husk of pomegranate, a famous fruit in Egypt, for the removal of toxic chromium from aqueous solution has been investigated. The batch experiment was conducted to determine the adsorption capacity of the pomegranate husk. The effects of initial metal concentration (25 and 50 mg l-1), pH, contact time, and sorbent concentration (2-6 g l-1) have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increased as the pH decreased, and the optimum pH value was pH 1.0. Adsorption equilibrium and kinetics were studied with different sorbent and metal concentrations. The adsorption process was fast, and equilibrium was reached within 3 h. The maximum removal was 100% for 25 mg l-1 of Cr6+ concentration on 5 g l-1 pomegranate husk concentration, and the maximum adsorption capacity was 10.59 mg g-1. The kinetic data were analysed using various kinetic models—pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion equations—and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich, and Generalized isotherm equations. The Elovich and pseudo-second-order equations provided the greatest accuracy for the kinetic data, while Langmuir and Generalized isotherm models were the closest fit for the equilibrium data. The activation energy of sorption has also been evaluated as 0.236 and 0.707 kJ mol-1 for 25 and 50 mg l-1 chromium concentration, respectively.  相似文献   

4.
The use of PLA/starch blends for nitrogen removal was achieved. The influence of different operating parameters on responses was verified using RSM. The conditions for desired responses were successfully optimized simultaneously. Blends material may have a promising application prospect in the future. Nitrogen removal from ammonium-containing wastewater was conducted using polylactic acid (PLA)/starch blends as carbon source and carrier for functional bacteria. The exclusive and interactive influences of operating parameters (i.e., temperature, pH, stirring rate, and PLA-to-starch ratio (PLA proportion)) on nitrification (Y1), denitrification (Y2), and COD release rates (Y3) were investigated through response surface methodology. Experimental results indicated that nitrogen removal could be successfully achieved in the PLA/starch blends through simultaneous nitrification and denitrification. The carbon release rate of the blends was controllable. The sensitivity of Y1, Y2, and Y3 to different operating parameters also differed. The sequence for each response was as follows: for Y1, pH>stirring rate>PLA proportion>temperature; for Y2, pH>PLA proportion>temperature>stirring rate; and for Y3, stirring rate>pH>PLA proportion>temperature. In this study, the following optimum conditions were observed: temperature, 32.0°C; pH 7.7; stirring rate, 200.0 r·min-1; and PLA proportion, 0.4. Under these conditions, Y1, Y2, and Y3 were 134.0 μg-N·g-blend-1·h-1, 160.9 μg-N·g-blend-1·h-1, and 7.6 × 103 μg-O·g-blend-1·h-1, respectively. These results suggested that the PLA/starch blends may be an ideal packing material for nitrogen removal.  相似文献   

5.
Bed expansion serves an important function in the design and operation of an upflow anaerobic reactor. An analysis of the flow pattern of expanded granular sludge bed (EGSB) reactors shows that most EGSB reactors do not behave as expanded bed reactors, as is widely perceived. Rather, these reactors behave as fluidized bed reactors based on the classic chemical reactor theory. In this paper, four bed expansion modes, divided as static bed, expanded bed, suspended bed, and fluidized bed, for bioreactors are proposed. A high-rate anaerobic suspended granular sludge bed (SGSB) reactor was then developed. The SGSB reactor is an upflow anaerobic reactor, and its expansion degree can be easily controlled within a range to maintain the suspended status of the sludge bed by controlling upfiow velocity. The results of the full-scale reactor confirmed that the use of SGSB reactors is advantageous. The full-scale SGSB reactor runs stably and achieves high COD removal efficiency (about 90%) at high loading rates (average 40 kg-COD·m^-3·d^-1, maximum to 52 kg·COD·m^-3 ·d^-1) based on the SGSB theory, and its expansion degree is between 22% and 37%.  相似文献   

6.
The efficient removal of phosphorous from water is an important but challenging task. In this study, we validated the applicability of a new commercially available nanocomposite adsorbent, i.e., a polymer-based hydrated ferric oxide nanocomposite (HFO-201), for the further removal of phosphorous from the bioeffluent discharged from a municipal wastewater treatment plant, and the operating parameters such as the flow rate, temperature and composition of the regenerants were optimized. Laboratory-scale results indicate that phosphorous in real bioeffluent can be effectively removed from 0.92 mg·L-1 to<0.5 mg·L-1 (or even<0.1 mg·L-1 as desired) by the new adsorbent at a flow rate of 50 bed volume (BV) per hour and treatable volume of 3500–4000 BV per run. Phosphorous removal is independent of the ambient temperature in the range of 15°C–40°C. Moreover, the exhausted HFO-201 can be regenerated by a 2% NaOH+ 5% NaCl binary solution for repeated use without significant capacity loss. A scaled-up study further indicated that even though the initial total phosphorus (TP) was as high as 2 mg·L-1, it could be reduced to<0.5 mg·L-1, with a working capacity of 4.4–4.8 g·L-1 HFO-201. In general, HFO-201 adsorption is a choice method for the efficient removal of phosphate from biotreated waste effluent.  相似文献   

7.
The effect of ion-doping on TiO2 nanotubes were investigated to obtain the optimal TiO2 nanotubes for the effective decomposition of humic acids (HA) through O3/UV/ion-doped TiO2 process. The experimental results show that changing the calcination temperature, which changed the weight fractions of the anatase phase, the average crystallite sizes, the Brunauer-Emmett-Teller surface area, and the energy band gap of the catalyst, affected the photocatalytic activity of the catalyst. The ionic radius, valence state, and configuration of the dopant also affected the photocatalytic activity. The photocatalytic activities of the catalysts on HA removal increased when Ag+, Al3+, Cu2+, Fe3+, V5+, and Zn2+ were doped into the TiO2 nanotubes, whereas such activities decreased as a result of Mn2+- and Ni2+-doping. In the presence of 1.0 at.% Fe3+-doped TiO2 nanotubes calcined at 550°C, the removal efficiency of HA was 80% with a pseudo-first-order rate constant of 0.158 min−1. Fe3+ in TiO2 could increase the generation of ·OH, which could remove HA. However, Fe3+ in water cannot function as a shallow trapping site for electrons or holes.  相似文献   

8.
? The Cu–Ni/γ-Al2O3 catalyst was prepared to study HCN hydrolysis ? On catalyst calcined at 400°C, the HCN removal efficiency reaches a maximum. ? HCN removal is the highest at 480 min at a H 2 O/HCN volume ratio of 150 ? The presence of CO facilitates HCN hydrolysis and increases NH 3 production. ? O 2 increases the HCN removal and NOx production but decreases NH 3 production GRAPHIC ABSTRACT To decompose efficiently hydrogen cyanide (HCN) in exhaust gas, g-Al2O3-supported bimetallic-based Cu–Ni catalyst was prepared by incipient-wetness impregnation method. The effects of the calcination temperature, H2O/HCN volume ratio, reaction temperature, and the presence of CO or O2 on the HCN removal efficiency on the Cu–Ni/g-Al2O3 catalyst were investigated. To examine further the efficiency of HCN hydrolysis, degradation products were analyzed. The results indicate that the HCN removal efficiency increases and then decreases with increasing calcination temperature and H2O/HCN volume ratio. On catalyst calcined at 400°C, the efficiency reaches a maximum close to 99% at 480 min at a H2O/HCN volume ratio of 150. The HCN removal efficiency increases with increasing reaction temperature within the range of 100°C–500°C and reaches a maximum at 500°C. This trend may be attributed to the endothermicity of HCN hydrolysis; increasing the temperature favors HCN hydrolysis. However, the removal efficiencies increases very few at 500°C compared with that at 400°C. To conserve energy in industrial operations, 400°C is deemed as the optimal reaction temperature. The presence of CO facilitates HCN hydrolysis andincreases NH3 production. O2 substantially increases the HCN removal efficiency and NOx production but decreases NH3 production.  相似文献   

9.
Monolith SCR catalysts coated with V2O5-WO3/TiO2 were prepared by varying binder and coating thickness. Comparing with a monolith extruded with 100% V2O5-WO3/TiO2 powder, a coated monolith with a catalyst-coating layer of 260 μm in thickness exhibited the similar initial NOx reduction activity at 250°C. After 4 h abrasion (attrition) in an air stream containing 300 g·m−3 fine sands (50–100 μm) at a superficial gas velocity of 10 m·s−1, the catalyst still has the activity as a 100% molded monolith does in a 24-h activity test and it retains about 92% of its initial activity at 250°C. Estimation of the equivalent durable hours at a fly ash concentration of 1.0 g·m−3 in flue gas and a gas velocity of 5 m·s−1 demonstrated that this coated monolith catalyst is capable of resisting abrasion for 13 months without losing more than 8% of its initial activity. The result suggests the great potential of the coated monolith for application to de-NOx of flue gases with low fly ash concentrations from, such as glass and ceramics manufacturing processes.  相似文献   

10.
Seasonal and spatial changes in seston, (POC), particulate organic carbon, (PON) particulate organic nitrogen and chlorophyll-a concentrations were studied on a monthly basis in a Mediterranean shallow coastal area (Stagnone di Marsala, Western Sicily) in order to gather information on factors controlling particulate organic matter distribution and composition. Seston concentration and composition were connected to the main physicochemical and biological driving factors, such as temperature, salinity, dissolved oxygen, wind-speed and biomass of submerged vegetation. the Stagnone di Marsala is characterized by high temperatures with strong seasonality (range: 11-28°C), while values ranged from 33 to 45 salinity. Total suspended organic matter concentrations (by ignition loss) ranged from 2 mg l-1 (in summer) to 12mgl-1 (in winter) and chlorophyll-a concentrations from 0.02 to 2 μgl-1. Despite a low POC/PON ratios (ranging from 5 to 11), the ratio of POC to chlorophyll (CHL-a) displayed very high values (annual average of 647). the data reported in this study, highlighting the oligotrophy of the Stagnone di Marsala area, indicate that the trophic state of the basin was controlled by different degrees of wind exposure (mean monthly wind velocity at exposed sites ranged between 4.2 and 6.7 m s-1) and by gradients in vegetation cover. These two factors induced clear changes in the concentration and composition of the suspended particles, but played a different role in exposed and sheltered areas. Exposed areas with limited vegetation were characterized by large resuspension processes and wide temperature and salinity fluctuations caused by wind induced turbulence. in these areas, autotrophic biomass (as chlorophyll-a), due to phytoplankton and/or re-suspended microphytobenthos, appeared to play an important  相似文献   

11.
COD/N at low ratios (0–0.82) improved N removals of CANON. CANON performance decreased after COD/N up to 0.82. The relative abundance of AOB decreased continuously with increasing COD/N. AOB outcompeted at a high COD load led to CANON failure. The relative abundance of AnAOB decreased and increased with increasing COD/N. The effects of increasing COD/N on nitrogen removal performance and microbial structure were investigated in a SBR adopting a completely autotrophic nitrogen removal over nitrite process with a continuous aeration mode (DO at approximately 0.15–0.2 mg/L). As the COD/N increased from 0.1 to≤0.59, the nitrogen removal efficiency (NRE) increased from 88.7% to 95.5%; while at COD/N ratios of 0.59–0.82, the NRE remained at 90.7%–95.5%. As the COD/N increased from 0.82 to 1.07, the NRE decreased continuously until reaching 60.1%. Nitrosomonas sp. (AOB) and Candidatus Jettenia (anammox bacteria) were the main functional genera in the SBR. As the COD/N increased from 0.10 to 1.07, the relative abundance of Nitrosomonas decreased from 13.4% to 2.0%, while that of Candidatus Jettenia decreased from 35% to 9.9% with COD/N<0.82 then increased to 45.4% at a COD/N of 1.07. Aerobic heterotrophic bacteria outcompeted AOB at high COD loadings (650 mg/L) because of oxygen competition, which ultimately led to deteriorated nitrogen removal performance.  相似文献   

12.
• Microbes enhance denitrification under varying DO concentrations and SIF dosages. • Abiotic nitrate reduction rates are proportional to SIF age and dosage. • Over 80% of the simultaneously loaded NO3-N and PO43 is removed biologically. This study focuses on identifying the factors under which mixed microbial seeds assist bio-chemical denitrification when Scrap Iron Filings (SIF) are used as electron donors and adsorbents in low C/N ratio waters. Batch studies were conducted in abiotic and biotic reactors containing fresh and aged SIF under different dissolved oxygen concentrations with NO3-N and/or PO43- influent(s) and their nitrate/phosphate removal and by-product formations were studied. Batch reactors were seeded with a homogenized mixed microbial inoculum procured from natural sludges which were enriched over 6 months under denitrifying conditions in the presence of SIF. Results indicated that when influent containing 40 mg/L of NO3-N was treated with 5 g SIF, 79.9% nitrate reduction was observed in 8 days abiotically and 100% removal was accomplished in 20 days when the reactor was seeded. Both abiotic and seeded reactors removed more than 92% PO43 under high DO conditions in 12 days. Abiotic and biochemical removal of NO3-N and abiotic removal of PO43 were higher under independent NO3-N/PO43 loading, while 99% PO43- was removed biochemically under combined NO3-N and PO43 loading. This study furthers the understandings of nitrate and phosphate removal in Zero Valent Iron (ZVI) assisted mixed microbial systems to encourage the application of SIF-supported bio-chemical processes in the simultaneous removals of these pollutants.  相似文献   

13.
The reduction of hexavalent chromium by scrap iron was investigated in continuous long-term fixed bed system. The effects of pH, empty bed contact time (EBCT), and initial Cr(VI) concentration on Cr(VI) reduction were studied. The results showed that the pH, EBCT, and initial Cr(VI) concentration significantly affected the reduction capacity of scrap iron. The reduction capacity of scrap iron were 4.56, 1.51, and 0.57 mg Cr(VI)·g-1 Fe0 at pH 3, 5, and 7 (initial Cr(VI) concentration 4 mg·L-1, EBCT 2 min, and temperature 25°C), 0.51, 1.51, and 2.85 mg Cr(VI)·g-1 Fe0 at EBCTs of 0.5, 2.0, and 6.0 min (initial Cr(VI) concentration 4 mg·L-1, pH 5, and temperature 25°C), and 2.99, 1.51, and 1.01 mg Cr(VI)·g-1 Fe0 at influent concentrations of 1, 4, and 8 mg·L-1 (EBCT 2 min, pH 5, and temperature 25°C), respectively. Fe(total) concentration in the column effluent continuously decreased in time, due to a decrease in time of the iron corrosion rate. The fixed bed reactor can be readily used for the treatment of drinking water containing low amounts of Cr(VI) ions, although the hardness and humic acid in water may shorten the lifetime of the reactor, the reduction capacity of scrap iron still achieved 1.98 mg Cr6+·g-1 Fe. Scanning electron microscope equipped with energy dispersion spectrometer and X-ray diffraction were conducted to examine the surface species of the scrap iron before and after its use. In addition to iron oxides and hydroxide species, iron-chromium complex was also observed on the reacted scrap iron.  相似文献   

14.
The granulation process, physic-chemical properties, pollution removal ability and bacterial communities of aerobic granules with different feed-wastewater (synthetic wastewater, R1; swine wastewater, R2), and the change trend of some parameters of two types of granules in long-term operated reactors treating swine wastewater were investigated in this experiment. The result indicated that aerobic granulation with the synthetic wastewater had a faster rate compared with swine wastewater and that full granulation in R1 and R2 was reached on the 30th day and 39th day, respectively. However, although the feed wastewater also had an obvious effect on the biomass fraction and extracellular polymeric substances of the aerobic granules during the granulation process, these properties remained at a similar level after long-term operation. Moreover, a similar increasing trend could also be observed in terms of the nitrogen removal efficiencies of the aerobic granules in both reactors, and the average specific removal rates of the organics and ammonia nitrogen at the steady-state stage were 35.33 mg·g−1 VSS and 51.46 mg·g−1 VSS for R1, and 35.47 mg·g−1 VSS and 51.72 mg·g−1 VSS for R2, respectively. In addition, a shift in the bacterial diversity occurred in the granulation process, whereas bacterial communities in the aerobic granular reactor were not affected by the seed granules after long-term operation.  相似文献   

15.
● Nitrifiers in WWTP were investigated at large spatial scale. ● AOB populations varied greatly but NOB populations were similar among cities. ● Drift dominated both AOB and NOB assembling processes. ● DO did not show a significant effect on NOB. ● NOB tended to cooperate with AOB and non-nitrifying microorganisms. Ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) play crucial roles in removing nitrogen from sewage in wastewater treatment plants (WWTPs) to protect water resources. However, the differences in ecological properties and putative interactions of AOB and NOB in WWTPs at a large spatial scale remain unclear. Hence, 132 activated sludge (AS) samples collected from 11 cities across China were studied by utilizing 16S rRNA gene sequencing technology. Results indicated that Nitrosomonas and Nitrosospira accounted for similar ratios of the AOB community and might play nearly equal roles in ammonia oxidation in AS. However, Nitrospira greatly outnumbered other NOB genera, with proportions varying from 94.7% to 99.9% of the NOB community in all WWTPs. Similar compositions and, hence, a low distance–decay turnover rate of NOB (0.035) across China were observed. This scenario might have partly resulted from the high proportions of homogenizing dispersal (~13%). Additionally, drift presented dominant roles in AOB and NOB assembling mechanisms (85.2% and 81.6% for AOB and NOB, respectively). The partial Mantel test illustrated that sludge retention time and temperature were the primary environmental factors affecting AOB and NOB communities. Network results showed that NOB played a leading role in maintaining module structures and node connections in AS. Moreover, most links between NOB and other microorganisms were positive, indicating that NOB were involved in complex symbioses with bacteria in AS.  相似文献   

16.
Bioaugmentation is an effective method of treating municipal wastewater with high ammonia concentration in sequencing batch reactors (SBRs) at low temperature (10℃). The cold-adapted ammonia- and nitrite- oxidizing bacteria were enriched and inoculated, respectively, in the bioaugmentation systems. In synthetic wastewater treatment systems, the average NH4+-N removal efficiency in the bioaugmented system (85%) was much higher than that in the unbioaugmented system. The effluent NH4+ -N concentration of the bioaugmented system was stably below 8 mg. L1 after 20 d operation. In municipal wastewater systems with bioaugmentation, the effluent NH4+- -N concentration was below 8 mg·L^-1 after 15 d operation. The average NH4+ -N removal efficiency in unbioaugmentation system (about 82%) was lower compared with that in the bioaugmentation system. By inoculating the cold-adapted nitrite-oxidizing bacteria (NOB) into the SBRs after 10 d operation, the nitrite concentration decreased rapidly, reducing the NO2 -N accumulation effectively at low temperature. The func- tional microorganisms were identified by PCR-DGGE, including uncultured Dechloromonas sp., uncultured Nitrospira sp., Clostridium sp. and uncultured Thauera sp. The results suggested that the cold-adapted microbial agent of ammonia-oxidizing bacteria (AOB) and NOB could accelerate the start-up and promote achieving the stable operation of the low-temperature SBRs for nitrification.  相似文献   

17.
The chromium(VI) biosorption onto guava seeds, as an alternative method for Cr6+ removal from aqueous solutions, was investigated. The parameters affecting kinetics and equilibrium of Cr6+ adsorption onto guava seeds were studied. An external mass-transfer diffusion coefficient k and intra-particle diffusion coefficient ki were determined to measure the rate-limiting step of adsorption. A single external mass-transfer diffusion model and intra-particle diffusion models were used. The effects of initial pH, sorbent mass, and initial Cr6+ concentrations on mass-transfer coefficients were investigated. The external mass-transfer coefficient has an average value of 7.2×10-3 cm s-1, while the intra-particle mass-transfer diffusion coefficient was 0.34 mg g-1 min-0.5. This indicates that external diffusion to the guava seeds surface and intra-particle diffusion are both involved in the sorption process. The isotherm equilibrium data were well fitted by the Langmuir and Freundlich models with an average correlation coefficient R2=0.98. The maximum removal of Cr6+ was obtained at pH 1 (about 100% for adsorbent dose of 15 g l-1 and 25 mg l-1 initial concentration of Cr6+). The results indicated that the guava seeds exhibit acceptable sorption capacity.  相似文献   

18.
• UASB reactor can work efficiently with high COD/SO42- ratios when SDBS exists. • Outcome of the competition between SRB and MPA was affected by SDBS. • Presence of SDBS makes methanogens with H2/CO2 as a substrate dominant. • Microbial diversity decreases in the presence of SDBS. In this study, the effects of organic sulfur on anaerobic biological processes were investigated by operating two up-flow anaerobic sludge blanket (UASB) reactors with sodium dodecylbenzene sulfonate (SDBS) as a representative of organic sulfur. The results indicated that the specific methanogenic activity (SMA) and chemical oxygen demand (COD) removal efficiency of R2 (with SDBS added) were higher than those of R1 (without SDBS) when the COD/SO42 ratio was above 5.0. However, when the COD/SO42 ratio was lower than 5.0, the sulfate reduction efficiency of R2 was higher than that of R1. These results and the observed SDBS transformation efficiency in anaerobic reactors indicate that low concentrations of SDBS accelerate methane production and the continuous accumulation of SDBS does not weaken the reduction of sulfate. Similarly, the calculated electron flux for a COD/SO42 ratio of 1.0 indicates that the utilization intensity of electrons by sulfate-reducing bacteria (SRB) in R2 was 36.48% higher than that of SRB in R1 and exceeded that of methane-producing archaea (MPA) under identical working conditions. Moreover, the addition of SDBS in R2 made sulfidogenesis the dominant reaction at low COD/SO42, and Methanobacterium and Methanobrevibacter with H2/CO2 as the substrate and Desulfomicrobium were the dominant MPA and SRB, respectively. However, methanogenesis was still the dominant reaction in R1, and Methanosaeta with acetic acid as the substrate and Desulfovibrio were the dominant MPA and SRB, respectively.  相似文献   

19.
Microsensor measurements and fluorescence in situ hybridization (FISH) analysis were combined to investigate the microbial populations and activities in a laboratory-scale sequencing batch reactor (SBR) for completely autotrophic nitrogen removal over nitrite (CANON). Fed with synthetic wastewater rich in ammonia, the SBR removed 82.5±5.4% of influent nitrogen and a maximum nitrogen-removal rate of 0.52 kgN·m−3·d−1 was achieved. The FISH analysis revealed that aerobic ammonium-oxidizing bacteria (AerAOB) Nitrosomonas and anaerobic ammonium-oxidizing bacteria (AnAOB) dominated the community. To quantify the microbial activities inside the sludge aggregates, microprofiles were measured using pH, dissolved oxygen (DO), NH4+, NO2 and NO3 microelectrodes. In the outer layer of sludge aggregates (0–700 μm), nitrite-oxidizing bacteria (NOB) showed high activity with 4.1 μmol·cm−3·h−1 of maximum nitrate production rate under the condition of DO concentration higher than 3.3 mg·L−1. Maximum AerAOB activity was detected in the middle layer (depths around 1700 μm) where DO concentration was 1.1 mg·L−1. In the inner layer (2200–3500 μm), where DO concentration was below 0.9 mg·L−1, AnAOB activity was detected. We thus showed that information obtained from microscopic views can be helpful in optimizing the SBR performance.  相似文献   

20.
Specific second-order rate constants were determined for 5-FU and CAP with ozone. Reaction sites were confirmed by kinetics, Fukui analysis, and products. The olefin moiety was the main ozone reaction site for 5-FU and CAP. Carboxylic acids comprised most of the residual TOC for 5-FU. Ozonation removed the toxicity associated with 5-FU and products but not CAP. Anticancer drugs (ADs) have been detected in the environment and represent a risk to aquatic organisms, necessitating AD removal in drinking water and wastewater treatment. In this study, ozonation of the most commonly used antimetabolite ADs, namely 5-fluorouracil (5-FU) and its prodrug capecitabine (CAP), was investigated to determine reaction kinetics, oxidation mechanisms, and residual toxicity. The specific second-order rate constants between aqueous ozone and 5-FU, 5-FU, 5-FU2, CAP, and CAP were determined to be 7.07(±0.11)×104 M1·s1, 1.36(±0.06)×106 M1·s1, 2.62(±0.17)×107 M1·s1, 9.69(±0.08)×103 M1·s1, and 4.28(±0.07)×105 M1·s1, respectively; furthermore, the second-order rate constants for OH reaction with 5-FU and CAP at pH 7 were determined to be 1.85(±0.20)×109 M1·s1 and 9.95(±0.26)×109 M1·s1, respectively. Density functional theory was used to predict the main ozone reaction sites of 5-FU (olefin) and CAP (olefin and deprotonated secondary amine), and these mechanisms were supported by the identified transformation products. Carboxylic acids constituted a majority of the residual organic matter for 5-FU ozonation; however, carboxylic acids and aldehydes were important components of the residual organic matter generated by CAP. Ozone removed the toxicity of 5-FU to Vibrio fischeri, but the residual toxicity of ozonated CAP solutions exhibited an initial increase before subsequent removal. Ultimately, these results suggest that ozone is a suitable technology for treatment of 5-FU and CAP, although the residual toxicity of transformation products must be carefully considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号