首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
农田土壤重金属污染状况及修复技术研究   总被引:33,自引:0,他引:33  
重金属污染因具有毒性、易通过食物链在植物,动物和人体内累积,对生态环境和人体健康构成严重威胁。随着工业快速发展、农药及化肥的广泛使用,农田土壤重金属污染越来越严重,研究农田土壤重金属污染现状及修复技术对农产品安全具有重要意义。综合国内外农田土壤重金属污染状况,农田土壤重金属污染主要来源于固体废弃物堆放及处置、工业废物大气沉降、污水农灌和农用物质的不合理施用。该文综述了国内外有关农田重金属污染土壤修复技术(物理修复、化学修复、生物修复、农业生态和联合修复)的研究进展,并针对各种修复方法,阐述了其原理、修复条件、应用实例及其优缺点,重点论述了植物修复的机理和应用,提出了草本与木本联合修复可有效提高农田土壤重金属复合污染的修复效率,为农田土壤土壤重金属复合污染修复提出了新的途径。最后在对已有研究分析的基础上,提出了联合修复技术(如生物联合技术、物理化学联合技术和物理化学-生物联合技术)可以在一定程度上克服使用单一修复手段存在的缺点,可提高复合污染的修复效率、降低修复成本,未来应深入探索联合修复技术间的相互作用机理,以期为农田土壤重金属综合治理与污染修复提供科学依据。  相似文献   

2.
As a new technology used for the cleaning of chromium-contaminated soil, worldwide interest in eletrokinetic (EK) remediation has grown considerably in recent times. However, owing to the fact that chromium exists as both cationic and anionic species in the soil, it is not an efficient method. This paper reports upon a study in which a process using approaching anodes (AAs) was used to enhance the removal efficiency of chromium by eletrokinetics. Two bench-scale experiments to remove chromium from contaminated soil were performed, one using a fixed anode (FA) and the other using AAs. In the AAs experiment, the anode moved toward the cathode by 7 cm every three days. After remediation, soil pH, total chromium, and fractionation of chromium in the soil were determined. The average removal efficiency of total chromium was 11.32% and 18.96% in the FA and AAs experiments, respectively. After remediation, acidic soil conditions throughout the soil were generated through the use of AAs, while 80% of the soil remained neutral or alkalic when using the FA approach. The acidic soil environment and high field intensity in the AAs experiment might have favored chromium desorption, dissolution and dissociation from the soil, plus the mobility of chromium in the soil was also enhanced. The results demonstrate that AAs used in the process of EK remediation can enhance the efficiency of chromium removal from soil.  相似文献   

3.
To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did.  相似文献   

4.
重金属污染土壤的电动原位修复技术研究   总被引:4,自引:0,他引:4  
电动力学修复技术作为一种新型的修复技术,由于其处理土壤污染的高效性,近几年来受到了越来越多的关注。综述了电动力学修复技术原理及近几年来其在重金属修复中的最新研究进展,阐述了电动力学修复技术相对于其它修复技术的优势,并指出了电动修复技术中需要克服的技术障碍,探讨了其大规模商业应用的可行性。电动技术能够强化土壤物质的传质过程,能够高效、快速定向迁移土壤中重金属离子达到去除的目的;同时电动技术可以与其它修复技术结合发展出系列组合修复技术,具有广泛的应用前景。从单一电动到复合电动是今后电动力学技术发展的重要方向。目前对污染物质复合电动力学效应下的迁移机理及模型、不同土壤性质(组分、酸碱性等)对于污染物质去除效率及其调控措施的研究仍需进一步深入。  相似文献   

5.
The combination of bioremediation and electrokinetics, termed bioelectrokinetics, has been studied constantly to enhance the removal of organic and inorganic contaminants from soil. The use of the bioleaching process originating from Fe- and/or S-oxidizing bacteria may be a feasible technology for the remediation of heavy metal-contaminated soils. In this study, the bioleaching process driven by injection of S-oxidizing bacteria, Acidithiobacillus thiooxidans, was evaluated as a pre-treatment step. The bioleaching process was sequentially integrated with the electrokinetic soil process, and the final removal efficiency of the combined process was compared with those of individual processes. Tailing soil, heavily contaminated with Cd, Cu, Pb, Zn, Co, and As, was collected from an abandoned mine area in Korea. The results of geochemical studies supported that this tailing soil contains the reduced forms of sulfur that can be an energy source for A. thiooxidans. From the result of the combined process, we could conclude that the bioleaching process might be a good pre-treatment step to mobilize heavy metals in tailing soil. Additionally, the electrokinetic process can be an effective technology for the removal of heavy metals from tailing soil. For the sake of generalizing the proposed bioelectrokinetic process, however, the site-specific differences in soil should be taken into account in future studies.  相似文献   

6.
Effect of hydroxypropyl-β-cyclodextrin (HPCD) on the bioavailability and biodegradation of the polycyclic aromatic hydrocarbons (PAHs) pyrene (PYR) and benzo[α]pyrene (BaP) in spiked soils was investigated in 14-week incubation experiments. To evaluate the effect of HPCD in soils with a different matrix, humic substance (HS) was added into soil samples. A 6-h Tenax TA extraction method was used to evaluate pollutants bioavailability. The biodegraded and extracted fractions were compared to evaluate the impact of HPCD on PAHs biodegradation. Results indicated positive effects of HPCD on fast desorption behaviours of PAHs. The biodegraded fraction was consistent with that of the extracted for PYR. However, in terms of BaP, the results were contrary which suggests that biological factors may be limiting factors for BaP pollution remediation. HS weakened the HPCD solubilisation effect while accelerated the decay of PYR and BaP, also implying that bioavailability was not the sole factor limiting PAH biodegradation. In addition, analysis of microbial communities demonstrated that HPCD inhibited the growth of some soil bacteria while HS promoted the evolution of some soil microorganisms. A limited population of hydrocarbon degrader populations led to observing incomplete PAH biodegradation even in the presence of HPCD.  相似文献   

7.
A soil remediation method combining in situ reduction of Cr(VI) with approaching anodes electrokinetic (AAs-EK) remediation is proposed. EK experiments were conducted to compare the effect of approaching anodes (AAs) and fixed electrodes (FEs) with and without sodium bisulfite (NaHSO3) as a reducing agent. When NaHSO3 was added to the soil before EK treatment, 90.3% of the Cr(VI) was reduced to Cr(III). EK experiments showed that the adverse effect of contrasting migration of Cr(III) and Cr(VI) species, which limits the practical application of this technique, was eliminated in the presence of the reducing agent. Furthermore, Tessier fractionation analysis indicated that the reducing agent changed the distribution of the chemical forms of Cr. The AAs-EK method was shown to acidize the soil as the anode moved toward the cathode and this acid front pushed the “focusing” region toward the cathode. After remediation, the pH of the soil was between 1.8 and 5.0 in AAs-EK experiments. The total Cr removal efficiency was 64.4% (except in the “focusing” region) when the reduction reaction was combined with AAs-EK method. We conclude that AAs-EK remediation in the presence of NaHSO3 is an appropriate method for Cr-contaminated soil.  相似文献   

8.
To access the influence of a vegetation on soil microorganisms toward organic pollutant biogegration, this study examined the rhizospheric effects of four plant species (sudan grass, white clover, alfalfa, and fescue) on the soil microbial community and in-situ pyrene (PYR) biodegradation. The results indicated that the spiked PYR levels in soils decreased substantially compared to the control soil without planting. With equal planted densities, the efficiencies of PYR degradation in rhizosphere with sudan grass, white clover, alfalfa and fescue were 34.0%, 28.4%, 27.7%, and 9.9%, respectively. However, on the basis of equal root biomass the efficiencies were in order of white clover >> alfalfa > sudan > fescue. The increased PYR biodegradation was attributed to the enhanced bacterial population and activity induced by plant roots in the rhizosphere. Soil microbial species and biomasses were elucidated in terms of microbial phospholipid ester-linked fatty acid (PLFA) biomarkers. The principal component analysis (PCA) revealed significant changes in PLFA pattern in planted and non-planted soils spiked with PYR. Total PLFAs in planted soils were all higher than those in non-planted soils. PLFA assemblages indicated that bacteria were the primary PYR degrading microorganisms, and that Gram-positive bacteria exhibited higher tolerance to PYR than Gram-negative bacteria did.  相似文献   

9.
通过在湖北省几种主要成土母质上对不同水型水稻土施用氮磷肥效果及施用技术的研究.初步明确了氮肥的施用效果为淹育型水稻土>潴育型水稻土>潜育型水稻土.磷肥效果与之相反.从土壤养分状况、氮肥和磷肥的当季利用率、土壤微生物、土壤还原性物质含量和水土温度等方面,初步分析了不同水型水稻土氮磷肥效果差异的原因.提出了不同水型水稻土氮磷肥的施用技术.  相似文献   

10.
Preface     
The combination of bioremediation and electrokinetics, termed bioelectrokinetics, has been studied constantly to enhance the removal of organic and inorganic contaminants from soil. The use of the bioleaching process originating from Fe- and/or S-oxidizing bacteria may be a feasible technology for the remediation of heavy metal–contaminated soils. In this study, the bioleaching process driven by injection of S-oxidizing bacteria, Acidithiobacillus thiooxidans, was evaluated as a pre-treatment step. The bioleaching process was sequentially integrated with the electrokinetic soil process, and the final removal efficiency of the combined process was compared with those of individual processes. Tailing soil, heavily contaminated with Cd, Cu, Pb, Zn, Co, and As, was collected from an abandoned mine area in Korea. The results of geochemical studies supported that this tailing soil contains the reduced forms of sulfur that can be an energy source for A. thiooxidans. From the result of the combined process, we could conclude that the bioleaching process might be a good pre-treatment step to mobilize heavy metals in tailing soil. Additionally, the electrokinetic process can be an effective technology for the removal of heavy metals from tailing soil. For the sake of generalizing the proposed bioelectrokinetic process, however, the site-specific differences in soil should be taken into account in future studies.  相似文献   

11.
In order to examine the potential of biosurfactants in soil remediation, and to investigate the effects of several operating conditions, such as flow rate, biosurfactant concentration and surfactant type, biosurfactant-enhanced soil flushing was conducted. In the biosurfactant-enhanced soil flushing process, the removal efficiency increased as the flow rate decreased. Rhamnolipid showed no effect on the removal efficiency of phenanthrene and diesel from sand in the concentration range 0.3-0.5%. However, rhamnolipid showed higher efficiencies for the removal of phenanthrene and diesel from sand than Tween 80. Based on total recovery, following an equivalent pore volume flush, it was more difficult to remove diesel than phenanthrene. In order to obtain the specific removal efficiency, more pore volumes of surfactant solution may be required in field applications. Under optimum conditions, the biosurfactant removed as much as 70% of the phenanthrene and 60% of the diesel in the sand. These results indicate that the use of biosurfactants in the flushing process is favorable, not only with respect to the environment, but also on removal efficiencies.  相似文献   

12.
• Recent progress of As-contaminated soil remediation technologies is presented. • Phytoextraction and chemical immobilization are the most widely used methods. • Novel remediation technologies for As-contaminated soil are still urgently needed. • Methods for evaluating soil remediation efficiency are lacking. • Future research directions for As-contaminated soil remediation are proposed. Arsenic (As) is a top human carcinogen widely distributed in the environment. As-contaminated soil exists worldwide and poses a threat on human health through water/food consumption, inhalation, or skin contact. More than 200 million people are exposed to excessive As concentration through direct or indirect exposure to contaminated soil. Therefore, affordable and efficient technologies that control risks caused by excess As in soil must be developed. The presently available methods can be classified as chemical, physical, and biological. Combined utilization of multiple technologies is also common to improve remediation efficiency. This review presents the research progress on different remediation technologies for As-contaminated soil. For chemical methods, common soil washing or immobilization agents were summarized. Physical technologies were mainly discussed from the field scale. Phytoextraction, the most widely used technology for As-contaminated soil in China, was the main focus for bioremediation. Method development for evaluating soil remediation efficiency was also summarized. Further research directions were proposed based on literature analysis.  相似文献   

13.
Zheng  Wukui  Cui  Tian  Li  Hui 《Environmental Chemistry Letters》2022,20(3):2043-2062

Organic-contaminated soils are a major health issue because pollutants can be transferred to waters, air, and living organisms. Many remediation technologies have been developed, yet single methods are usually not fully efficient due to the wide diversity of soil and pollutant properties. Therefore, combining several methods has recently shown wider application range, higher efficiency, and better economic benefits. Here we compare combined remediation technologies to clean organic-contaminated soils, with focus on physical–chemical, physical–chemical-biological, and biological-microbial methods. Physical–chemical methods are the most widely used due to their high efficiency, yet they are costly, and they alter soil properties. These issues can be alleviated by adding a biological treatment. Combined biological-microbial methods are more recent and rely on bioengineering.

  相似文献   

14.
Evaluation of Electrokinetic Remediation of Arsenic-contaminated Soils   总被引:1,自引:0,他引:1  
The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH2PO4) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals.  相似文献   

15.
广西刁江流域Cd和Pb复合污染稻田土壤的钝化修复   总被引:12,自引:0,他引:12  
采用田间小区试验,研究施用海泡石、石灰和磷酸盐对广西刁江流域Cd和Pb复合污染稻田土壤的钝化修复效应,并通过土壤重金属形态分析探讨不同钝化剂的作用机理。结果表明,添加钝化剂可显著提高稻谷和秸秆产量,最大增产率分别可达25.4%和28.3%,其中海泡石与磷酸盐复配处理增产效果最佳。施用钝化剂可以有效降低水稻各部位重金属含量,水稻糙米Cd和Pb含量最大降幅可达65.12%和61.86%;钝化剂复配处理对水稻地上部Cd和Pb含量的降低效果明显优于单一处理,其中海泡石和磷酸盐或石灰复配处理糙米cd含量符合GB2762--2005《食品中污染物限量》。不同钝化处理均能显著降低土壤TCLP(毒性特性浸出程序)提取态cd和Pb含量,最大降幅分别为28.86%和45.60%,其中钝化剂复配处理对土壤TCLP提取态重金属的抑制效果优于单一钝化处理。总体而言,海泡石与磷酸盐复配处理对广西刁江流域重金属复合污染稻田土壤的钝化修复作用最佳。  相似文献   

16.
两种改性剂对多氯联苯污染土壤协同热脱附影响研究   总被引:1,自引:0,他引:1  
采用热脱附技术处理多氯联苯污染土壤已经成为了一种主要的场地修复方式。为提高热脱附效率,降低能耗,以典型电力电容器污染土壤为对象,采用2种改性剂(零价纳米铁和氢氧化钠)研究协同热脱附下多氯联苯的去除效率、分布特性及毒性当量。结果表明纳米铁和NaOH存在的条件下,有效提高了多氯联苯和毒性当量的去除效率,在较低温度下尤其显著,因此添加改性剂能够有效地促进热脱附过程。纳米铁的协同热脱附机理为显著强化了热脱附过程的传质传热,同时伴有一定的脱氯降解。NaOH的添加在较低温度下实现了较强的脱氯降解作用,加氢脱氯机理可用来解释协同热脱附过程中多氯联苯的脱氯反应过程。上述研究结果为多氯联苯污染土壤的场地修复提供理论基础。  相似文献   

17.
In this work a two-stage process combining soil electrokinetic remediation and liquid electrochemical oxidation for the remediation of polluted soil with organic compounds has been developed and evaluated using phenanthrene-spiked kaolinite. Application of an unenhanced electrokinetic process resulted in negligible removal of phenanthrene from the kaolinite sample. Addition of co-solvents and electrolyte to the processing fluid used in the electrode chambers enhanced phenanthrene desorption from the kaolinite matrix and favoured electro-osmotic flow. Near-complete removal of phenanthrene was achieved using Na2SO4 and ethanol in the processing fluid. Phenanthrene was transported towards the cathode chamber where it was collected. The cathodic solution containing the pollutant was treated by electrochemical oxidation; complete degradation of phenanthrene occurred after 9 h using Na2SO4 as electrolyte.  相似文献   

18.
Electrokinetic process for remediation of a shooting-range site was evaluated in this study. By field operation for 100 days, the newly designed electrokinetic system was evaluated for process stability, performance, and efficiency. The field site of this study was an abandoned military shooting range located in the Civilian Control Line of South Korea. The target area, only, was heavily contaminated by Pb and Cu to a depth of 0.5 m. After dry-sieving of the field soil to separate particulate Pb, two cells in a hexagonal (two-dimensional) arrangement, including ten anodes outside the cell and two cathodes in the middle, were prepared. The pH of each electrolyte was adjusted by use of concentrated HNO(3), resulting in acid-enhanced electrokinetics. The monitoring results indicated that overall removal of heavy metals (Pb, Cu) was achieved, and that both heavy metals were removed from outside the cell. The average final efficiency of removal of Pb and Cu was 39.5 ± 35 and 63.8 ± 12%, respectively. Although the feasibility of this system was confirmed, for commercialization of the process confirmed drawbacks must be improved by further study.  相似文献   

19.
A soil washing process was applied to remediate arsenic (As)-contaminated stream sediments around an abandoned mine in Goro, Korea. Laboratory scale soil washing experiments for As-contaminated stream sediments were performed under various washing conditions in order to maximize As removal efficiency. Stream sediments were taken from two sites (S1 and S5) along the main stream connected to an abandoned mine. Stream sediments at the two sites were divided into two groups (≥0.35 and <0.35 mm in diameter), giving four types of sediments, which were thereupon used for soil washing experiments. The results of soil washing experiments involving various pH conditions suggested that As removal efficiency is very high in both strongly acidic and basic solutions (pH 1 and 13), regardless of sediment type. Removal efficiencies for fine sediments from S1 and S5 were >95% after 1 h of washing with 0.2 M citric acid (C6H8O7). When using 0.2 M citric acid mixed with 0.1 M potassium phosphate (KH2PO4), the As removal efficiency increased to 100%. When recycled washing solution was applied, As removal efficiency was maintained at a level greater than 70%, even after eight recycling events. This suggests that the recycling of washing solution could be successfully applied as a means of decreasing the cost of the washing process. Results from the experiments suggest that soil washing is a potentially useful process for the remediation of As-contaminated stream sediments around abandoned mines.  相似文献   

20.
褐土中磷镉交互作用对磷镉有效性影响   总被引:2,自引:0,他引:2  
为了阐明磷与镉在土壤-植物系统中交互作用机制,通过施用磷肥提高镉污染土壤修复效率,通过室内培养试验研究了磷镉交互作用对磷镉有效性影响。在供试褐土中磷、镉分别以不同处理培养90 d后,接近自然状态下对磷、镉进行吸附、解吸。结果表明:(1)在磷镉同时加入时,速效P的质量分数随着施Cd质量浓度的升高而显著降低,在磷质量分数一定时,施镉降低了土壤中磷的有效性。(2)培养的含磷土壤对不同质量浓度镉吸附解吸时,褐土对镉的吸附量随着磷质量分数的增加而增加,此结果与(1)有一定的差异,可能的原因是向土壤中添加磷镉的顺序不同所造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号