首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Recuperative thickening of anaerobic digester sludge (thickening with solids return) yields increased digester capacity. Common thickening methods cause oxygen exposure to the digester sludge. This study evaluated the effects of various levels of oxygen exposure on the acetoclastic methanogens. Gravity belt thickening had no detrimental effect on the acetoclastic activity. From a 7-day batch test with continuous oxygen exposure of digester sludge, a 12% loss in acetoclastic activity was predicted for a digester with a 20-day solids retention time (SRT) and 100% recycle with recuperative thickening via dissolved air flotation thickening. However, a greater loss (27%) was found from a long-term, bench-scale digester operated under similar conditions. This loss did not affect the digester performance, as measured by volatile solids destruction. This research suggests that recuperative thickening may not affect digester performance at a long SRT with constant operation, but may change the reserve capacity of the anaerobic community.  相似文献   

2.
Chromium species behaviour in the activated sludge process   总被引:3,自引:0,他引:3  
The purpose of this research was to compare trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) removal by activated sludge and to investigate whether Cr(VI) reduction and/or Cr(III) oxidation occurs in a wastewater treatment system. Chromium removal by sludge harvested from sequencing batch reactors, determined by a series of batch experiments, generally followed a Freundlich isotherm model. Almost 90% of Cr(III) was adsorbed on the suspended solids while the rest was precipitated at pH 7.0. On the contrary, removal of Cr(VI) was minor and did not exceed 15% in all experiments under the same conditions. Increase of sludge age reduces Cr(III) removal, possibly because of Cr(III) sorption on slime polymers. Moreover, the decrease of suspended solids concentration and the acclimatization of biomass to Cr(VI) reduced the removal efficiency of Cr(III). Batch experiments showed that Cr(III) cannot be oxidized to Cr(VI) by activated sludge. On the contrary, Cr(VI) reduction is possible and is affected mainly by the initial concentration of organic substrate, which acts as electron donor for Cr(VI) reduction. Initial organic substrate concentration equal to or higher than 1000 mgl(-1) chemical oxygen demand permitted the nearly complete reduction of 5 mgl(-1) Cr(VI) in a 24-h batch experiment. Moreover, higher Cr(VI) reduction rates were obtained with higher Cr(VI) initial concentrations, expressed in mg Cr(VI) g(-1) VSS, while decrease of suspended solids concentration enhanced the specific Cr(VI) reduction rate.  相似文献   

3.
A laboratory study of the Cannibal process was undertaken to determine if the Cannibal system would generate less sludge compared with a conventional activated sludge system. Side-by-side sequencing batch reactors were operated--one using the Cannibal configuration and the other as conventional activated sludge. It was found that the Cannibal process generated 60% less solids than the conventional activated sludge system, without any negative effect on the effluent quality or the settling characteristics of the activated sludge. The oxygen uptake rate for the centrate from the Cannibal bioreactor showed that readily biodegradable organic matter was released from the recycled biomass in the Cannibal bioreactor. It is proposed that the mechanism for reduced solids from the Cannibal system is that, in the Cannibal bioreactor, iron is reduced, releasing iron-bound organic material into solution. When the Cannibal biomass is recirculated back to the aeration basin, the released organic material is rapidly degraded.  相似文献   

4.
Low dissolved oxygen (DO) concentrations occur commonly in aerobic digesters treating thickened sludge, with benefits of smaller digester size, much reduced aeration cost, and higher digestion temperature (especially important for plants in colder areas). The effects of low DO concentrations on digestion kinetics were studied using the sludge from municipal wastewater treatment plants in Akron, Ohio, and Los Lunas, New Mexico. The experiments were conducted in both batch digestion and a mixed mode of continuous, fed-batch, and batch operations. The low DO condition was clearly advantageous in eliminating the need for pH control because of the simultaneous occurrence of nitrification and denitrification. However, when compared with fully aerobic (high DO) systems under constant pH control (rare in full-scale plants), low DO concentrations and a higher solids loading had a negative effect on the specific volatile solids (VS) digestion kinetics. Nonetheless, the overall (volumetric) digestion performance depends not only on the specific digestion kinetics, but also the solids concentration, pH, and digester temperature. All of the latter factors favor the low DO digestion of thickened sludge. The significant effect of temperature on low DO digestion was confirmed in the mixed-mode study with the Akron sludge. When compared with the well-known empirical correlation between VS reduction and the product (temperature x solids retention time), the experimental data followed the same trend, but were lower than the correlation predictions. The latter was attributed to the lower digestible VS in the Akron sludge, the slower digestion at low DO concentrations, or both. Through model simulation, the first-order decay constant (kd) was estimated as 0.004 h(-1) in the mixed-mode operations, much lower than those (0.011 to 0.029 h(-1)) obtained in batch digestion. The findings suggested that the interactions among sludges with different treatment ages may have a substantially negative effect on digestion kinetics. The use of multistage digesters, especially with small front-end reactors, may be advantageous in both "process" kinetics and "biological reaction" kinetics for sludge digestion.  相似文献   

5.
The anaerobic biodegradability of municipal primary and secondary sludge with increasing levels of partially dewatered fat, oil, and grease (FOG) was assessed using a mixed methanogenic culture at 35 "C. Under batch conditions with an acclimated and enriched microbial population, the sludge loading was 3 kg volatile solids/m3 and the highest FOG loading tested was 1.5 kg volatile solids/m3, resulting in a methane yield of 245 mL methane/g sludge volatile solids added at 35 degrees C and 1010 mL methane/g FOG volatile solids added at 35 degrees C. Under semicontinuous feeding conditions, the sludge and sludge plus FOG loading tested were 3 and 3.75 kg volatile solids/m3-d, respectively. Within 23 days of operation, the volatile fatty acid concentrations were reduced below 200 mg chemical oxygen demand/L (187 mg/L as acetic acid). Enhancement of sludge digestion was observed in those reactors where codigestion of sludge and FOG took place, which was attributed to a higher level of microbial activity maintained in these reactors as a result of FOG degradation. The results of this study demonstrate that beneficial use of FOG through codigestion with municipal sludge is feasible.  相似文献   

6.
The removal of particulate material in the aeration basin of the activated sludge process is mainly attributed to bioflocculation and hydrolysis of particulate substrate. The bioflocculation process in the aeration tank of the activated sludge process occurs only under favorable conditions in the system, and several common operational parameters affect its performance. The principal objective of this research was to observe the effect of mixed liquor suspended solids, solids retention time (SRT), and extracellular polymer substances on the removal of particulate substrate by bioflocculation. A first-order particulate removal expression, based on flocculation, accurately described the removal rates for supernatant suspended solids and colloidal chemical oxygen demand. Based on the results presented in this investigation, a mixed liquor concentration of approximately 2200 mg/L, an SRT of at least 3 days, and a contact time of 30 minutes are needed for relatively complete removal of the particulate substrate in a plug-flow reactor.  相似文献   

7.
Chen SY  Lin JG 《Chemosphere》2004,54(3):283-289
A technologically and economically feasible process called bioleaching was used for the removal of heavy metals from livestock sludge with indigenous sulfur-oxidizing bacteria in this study. The effects of sludge solids concentration on the bioleaching process were examined in a batch bioreactor. Due to the buffering capacity of sludge solids, the rates of pH reduction, ORP rise and metal solubilization were reduced with the increase of the solids concentration. No apparent influence of solids concentration on sulfate produced by sulfur-oxidizing bacteria was observed when the solids concentration was less than 4% (w/v). A Michaelis-Menten type of equation was able to well describe the relationship between solids concentration and rate of metal solubilization. Besides, high efficiencies of metal solubilization were achieved after 16 d of bioleaching. Therefore, the bioleaching process used in this study could be applied to remove heavy metals effectively from the livestock sludge.  相似文献   

8.
The properties of sludges from a pilot-scale submerged membrane bioreactor (SMBR) and two bench-scale complete-mix, activated sludge (CMAS) reactors treating municipal primary effluent were determined. Compared with the CMAS sludges, the SMBR sludge contained a higher amount of soluble microbial products (SMP) and colloidal material attributed to the use of a membrane for solid-liquid separation; a higher amount nocardioform bacteria, resulting from efficient foam trapping; and a lower amount of extracellular polymeric substances (EPS), possibly because there was no selective pressure for the sludge to settle. High aeration rates in both the CMAS and SMBR reactors produced sludges with higher numbers of smaller particles. Normalized capillary suction time values for the SMBR sludge were lower than for the CMAS sludges, possibly because of its lower EPS content.  相似文献   

9.
Distribution coefficients (K(d)) between water and activated sludge particles (f(oc)=27.7+/-0.1%) were measured for the steroid estrogens (SE), estrone (E1), 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) in batch experiments. Experimental concentration levels ranged from environmentally realistic low ng/l to the high microg/l. In this range K(d)s were independent of their water concentration. The experimentally obtained K(d)s (with 95% confidence intervals) were 402+/-126 l/kg, 476+/-192 l/kg and 584+/-136 l/kg for E1, E2 and EE2, respectively. K(d)s were used to estimate the fraction of the total SE concentration that is expected to be sorbed in the activated sludge treatment tanks of a typical STP assuming equilibrium conditions. Assuming a suspended solids concentration of 4 g/l dissolved solids (ds), it was estimated that 61+/-9%, 66+/-13% and 70+/-6% of the total concentration of E1, E2 and EE2, respectively, would be sorbed during activated sludge treatment. The fraction of the SEs that was expected to be sorbed to suspended sludge particles in the effluents from a typical Danish STP was estimated to be only 0.20+/-0.06%, 0.24+/-0.10% and 0.29+/-0.07% of the total concentration of E1, E2 and EE2, respectively, at a suspended solids concentration of 5 mg/lds. For a typical STP the removal of steroid estrogens with excess sludge was estimated to be only 1.5-1.8% of the total loading if equilibrium conditions exists. Sorption is therefore not important for the fate of SEs in STPs compared to biodegradation.  相似文献   

10.
The objective of this study was to investigate the application of the divalent cation bridging theory (DCBT) as a tool in the chemical selection process at an activated sludge plant to improve settling, dewatering, and effluent quality. According to the DCBT, to achieve improvements, the goal of chemical selection should be to reduce the ratio of monovalent-to-divalent (M/D) cations. A study was conducted to determine the effect of using magnesium hydroxide [Mg(OH)2] as an alternative to sodium hydroxide (NaOH) at a full-scale industrial wastewater treatment plant. Floc properties and treatment plant performance were measured for approximately one year during two periods of NaOH addition and Mg(OH)2 addition. A cost analysis of plant operation during NaOH and Mg(OH)2 use was also performed. During NaOH addition, the M/D ratio was 48, while, during Mg(OH)2 addition, this ratio was reduced to an average of approximately 0.1. During the Mg(OH)2 addition period, the sludge volume index, effluent total suspended solids, and effluent chemical oxygen demand were reduced by approximately 63, 31, and 50%, respectively, compared to the NaOH addition period. The alum and polymer dose used for clarification was reduced by approximately 50 and 60%, respectively, during Mg(OH)2 addition. The dewatering properties of the activated sludge improved dewatering as measured by decreased capillary suction time and specific resistance to filtration (SRF), along with an increase in cake solids from the SRF test. This corresponded to a reduction in the volume of solids thickened by centrifuges at the treatment plant, which reduced the disposal costs of solids. Considering the costs for chemicals and solids disposal, the annual cost of using Mg(OH)2 was approximately 30,000 dollars to 115,000 dollars less than using NaOH, depending on the pricing of NaOH. The results of this study confirm that the DCBT is a useful tool for assessing chemical-addition strategies and their potential effect on activated sludge performance.  相似文献   

11.
A side effect of the application of chlorine for controlling filamentous bulking is deflocculation of floc-forming bacteria, which may cause unacceptable effluent deterioration depending on dosing. It was assumed that chlorine may adversely affect the adhesion ability of floc bacteria, promoting their erosion in shear flow. The effect of chlorination on the strength of activated sludge flocs was investigated. The adhesion-erosion (AE) model developed by Mikkelsen and Keiding was used to interpret results from deflocculation tests with varying shear and solids concentration. The AE model yields the adhesion enthalpy (deltaHG/R) of cells in sludge flocs and parameters from the model were used to quantify the sludge in terms of floc strength. Two activated sludges with different initial characteristics were studied. The resulting model parameters showed that the AE model was suitable for quantifying the bond energy of particles to the activated sludge exposed to chlorine. For one activated sludge, adhesion of cells was largely unaffected by the applied chlorine doses. A second sludge showed reduced adhesion strength with chlorine, leading to increasing deflocculation. The simple batch test and AE model proved valuable for assessing the effect of chlorination on the flocs in activated sludge. By use of these procedures, it is possible to determine acceptable chlorine dosing to avoid excessive deflocculation and effluent deterioration.  相似文献   

12.
The purpose of this research was to study the fate and toxicity of triclosan (TCS) in activated sludge systems and to investigate the role of biodegradation and sorption on its removal. Two continuous-flow activated sludge systems were used; one system was used as a control, while the other received TCS concentrations equal to 0.5 and 2mgl(-1). At the end of the experiment, 1mgl(-1) TCS was added in the control system to investigate TCS behaviour and effects on non-acclimatized biomass. For all concentrations tested, more than 90% of the added TCS was removed during the activated sludge process. Determination of TCS in the dissolved and particulate phase and calculation of its mass flux revealed that TCS was mainly biodegraded. Activated sludge ability to biodegrade TCS depended on biomass acclimatization and resulted in a mean biodegradation of 97%. Experiments with batch and continuous-flow systems revealed that TCS is rapidly sorbed on the suspended solids and afterwards, direct biodegradation of sorbed TCS is performed. Regarding TCS effects on activated sludge process, addition of 0.5mgl(-1) TCS on non-acclimatized biomass initially deteriorated ammonia removal and nitrification capacity. After acclimatization of biomass, nitrification was fully recovered and further increase of TCS to 2mgl(-1) did not affect the performance of activated sludge system. The effect of TCS on organic substrate removal was minor for concentrations up to 2mgl(-1), indicating that heterotrophic microorganisms are less sensitive to TCS than nitrifiers.  相似文献   

13.
活性污泥数学模型中异养菌产率系数测定方法的研究   总被引:2,自引:0,他引:2  
采用间歇活性污泥法和呼吸计量法测定活性污泥数学模型中异养菌产率系数.研究结果表明,间歇活性污泥法测定结果受试验控制条件特别是污泥有机负荷的影响非常大,且试验周期比较长;人工配水条件下,呼吸计量法测定异氧菌产率系数(YH)在0.71以上,比活性污泥数学模型推荐值高,其结果与底物性质有关,该方法准确性高,重现性良好.  相似文献   

14.
研究构建了2个容积为1.1 L的好氧活性污泥反应器(即1号和2号反应器)1,号反应器每天直接通加低剂量臭氧(投加量为0.01 g O3/g TSS),不加臭氧的2号反应器作为对照平行运行,均采用每天换一次人工污水的充/排式操作。运行71 d的结果表明2,个反应器对人工污水COD的处理效果基本相同。反应器运行40 d后1,号反应器的污泥浓度比2号反应器的污泥浓度低1 400~1 700 mg/L并可稳定在8 200 mg/L,污泥减量化效果明显。低剂量臭氧的直接通加明显降低了胞内ATP浓度,并影响了微生物的抗氧化活性,2号反应器的平均超氧化物歧化酶和过氧化氢酶酶活比1号反应器分别高了24.3%和9.5%。PCR-DGGE对两反应器微生物种群的分析结果表明:Uncultured gammaproteobacteria bacteri-um、Nannocystis exedens和Uncultured actinobacterium为1号反应器的主要种群;而2号反应器的主要种群为Uncultured bacte-rium和Uncultured gammaproteobacteria bacterium。  相似文献   

15.
废水处理工艺中抗生素类污染物的存在可能会对生物处理过程产生长期而深远的影响,为探明此类污染物对废水生物处理主体活性污泥性能等方面的影响,采用间歇培养法研究了活性污泥法处理污水时,抗生素类污染物的存在对活性污泥性能如胞外聚合物(EPS)、污染物处理能力、脱氢酶活性和群落结构的影响。结果表明,抗生素的存在会导致活性污泥的胞外聚合物总量及其主要组分蛋白质和多糖增加,以产生保护屏障;且由于污泥絮体解体,细胞破裂导致EPS中DNA和色氨酸含量增加。同时,由于蛋白质大量增加引起的表面负电荷的增加,使污泥疏水性增强,絮凝性能恶化;污泥絮体解体导致污泥颗粒变小,SVI也随之下降;在活性污泥脱氢酶活性急剧下降的同时,出水TOC迅速升高。此外,抗生素类污染物在抑制活性污泥中大部分细菌的同时,对部分菌群也有刺激生长作用,最终导致活性污泥生物群落结构的改变。四环素类抗生素对活性污泥的EPS和絮凝沉降性能的影响大于磺胺类,而对污水处理能力和群落结构的影响则不如磺胺类。抗生素类污染物的长期存在会对活性污泥沉降性能、絮凝性能、脱氢酶活性以及活性污泥群落结构等产生一系列负面影响,进而影响污染物去除效果,导致出水水质恶化。  相似文献   

16.
Enhanced biological phosphorus removal (EBPR) from wastewater relies on the enrichment of activated sludge with phosphorus-accumulating organisms (PAOs). The presence and proliferation of glycogen-accumulating organisms (GAOs), which compete for substrate with PAOs, may be detrimental for EBPR systems, leading to deterioration and, in extreme cases, failure of the process. Therefore, from both process evaluation and modeling perspectives, the estimation of PAO and GAO populations in activated sludge systems is a relevant issue. A simple method for the quantification of PAO and GAO population fractions in activated sludge systems is presented in this paper. To develop such a method, the activity observed in anaerobic batch tests executed with different PAO/GAO ratios, by mixing highly enriched PAO and GAO cultures, was studied. Strong correlations between PAO/GAO population ratios and biomass activity were observed (R2 > 0.97). This served as a basis for the proposal of a simple and practical method to quantify the PAO and GAO populations in activated sludge systems, based on commonly measured and reliable analytical parameters (i.e., mixed liquor suspended solids, acetate, and orthophosphate) without requiring molecular techniques. This method relies on the estimation of the total active biomass population under anaerobic conditions (PAO plus GAO populations), by measuring the maximum acetate uptake rate in the presence of excess acetate. Later, the PAO and GAO populations present in the activated sludge system can be estimated, by taking into account the PAO/GAO ratio calculated on the basis of the anaerobic phosphorus release-to-acetate consumed ratio. The proposed method was evaluated using activated sludge from municipal wastewater treatment plants. The results from the quantification performed following the proposed method were compared with direct population estimations carried out with fluorescence in situ hybridization analysis (determining Candidatus Accumulibacter Phosphatis as PAO and Candidatus Competibacter Phosphatis as GAO). The method showed to be potentially suitable to estimate the PAO and GAO populations regarding the total PAO-GAO biomass. It could be used, not only to evaluate the performance of EBPR systems, but also in the calibration of potential activated sludge mathematical models, regarding the PAO-GAO coexistence.  相似文献   

17.
Partial ozonation of return activated sludge for waste sludge minimization and soluble COD production was examined. Two nitrifying sequencing batch reactors, one control and one ozonated, were operated under alternating anoxic/aerobic conditions. During the first steady-state period of 95-136 d of ozonation, the amount of wasted solids decreased with the ozone dose up to 25%, generating soluble COD by cell lysis. However, during a subsequent period of 190-232 d of continuous ozonation, the effect of solids destruction and COD production decreased by 50%. The investigations of extracellular polymers content and floc shape analyses showed that, after prolonged daily ozone treatment, sludge floc structure becomes stronger, denser, and more ozone-resistant. The findings suggest that, for prolonged operation of partial sludge ozonation, an increase in ozone doses may be required to continuously maintain the expected solids destruction level. This in turn will increase the operational costs of the treatment.  相似文献   

18.
Chlorination is often used to control filamentous bulking in activated sludge systems. Pure culture and mixed-liquor experiments showed that soluble potassium (K+) concentrations increased by 2.4 mg/L (80%) and 1.5 to 3.6 mg/L (11 to 30%) in the bulk liquid phase of pure and activated sludge cultures that were exposed to chlorine, relative to unchlorinated controls. Effluent turbidity and total suspended solids from settled mixed liquor increased significantly in both short-term batch and sequencing batch reactor experiments when chlorine mass load increased above 6 milligrams of chlorine per gram mixed liquor volatile suspended solids (mg Cl2/g MLVSS) in a single dose, which correlated with a localized chlorine concentration at the dose point of 10 mg/L as Cl2 or greater. The results support the hypothesis that the glutathione-gated potassium efflux (GGKE) bacterial stress response may contribute to increased effluent turbidity associated with high doses of mixed-liquor chlorination. It is suggested that potassium is a useful parameter to monitor at full-scale facilities when determining chlorine mass doses that should be used to control filaments and minimize increases in effluent turbidity.  相似文献   

19.
The biodegradation behavior of four organotin (OT) compounds, namely tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT) and triphenyltin (TPhT), was studied in lab-scale activated sludge batch reactors. The activated sludge was spiked with the OT compounds at a level of 100 microg l(-1) as Sn. Determination of the OT compounds by GC-FPD after ethylation in the dissolved and particulate phase revealed that 24 h after the start of the experiments, almost the total of OT compounds has been removed from the dissolved phase and is associated with the suspended solids. Calculation of mass balance in batch reactors showed that OT compounds biodegradation was performed via a sequential dealkylation process. Removals due to biodegradation were differentiated according to the parent compound. In experiments with non-acclimatized biomass, a percentage of 27.1, 8.3, 73.8 and 51.3 was still present as TBT, DBT, MBT and TPhT, respectively, at the end of the experiment (18th day). Half-lives (t1/2) of 10.2 and 5.1 days were calculated for TBT and DBT, respectively, whereas apparent t1/2 values could not be determined for MBT and TPhT (t1/2>18 days). The capacity of activated sludge to biodegrade OT compounds in the absence of supplemental substrate indicated that these compounds can be metabolized as single sources of carbon and energy in activated sludge systems. Excluding TBT, the presence of low concentrations of supplemental substrate did not affect the biodegradation potential of activated sludge. The acclimatization of biomass on OT compounds enhanced significantly biodegradation, resulting in significant decreases of half-lives of OT compounds. As a result in the presence of acclimatized biomass, half-lives of 1.4, 3.6, 9.8 and 5.0 days were calculated for TBT, DBT, MBT and TPhT, respectively.  相似文献   

20.
为了揭示中温与高温活性污泥的絮凝特性及其作用机制,本研究采用序批式反应器,分别在35℃及55℃条件下培养了中温与高温活性污泥,考查了2种活性污泥的相互作用能与胞外聚合物的特性。研究结果表明:高温污泥系统出水浊度为(145±22.9)NTU,是中温污泥系统的近50倍。中温污泥的相互作用能曲线存在明显的势垒(313.4×10^-20J),而高温污泥不存在明显势垒;高温污泥的松散型胞外聚合物与紧致型胞外聚合物的含量分别为中温污泥的12倍及3.5倍,且胞外聚合物中蛋白质、多糖、腐殖酸和DNA的含量均高于中温污泥的含量。这表明,尽管高温污泥相互作用能势垒低,但其胞外聚合物,尤其是松散型胞外聚合物含量过高,是高温污泥絮凝性能低的内在机制,而胞外聚合物组成特征不是中温和高温污泥絮凝性能差异的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号