首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper summarizes research that investigates the effects of alternative farming practices on the performance of Lake Erie basin farms. First, data from a representative panel of about 100 farmers is analyzed to determine how conservation tillage, rotations, and other factors affected farms' economic returns during 1987-1992. Statistical analysis of these data is unable to demonstrate that there is any significant relationship between farming system (i.e., tillage and rotation) variables and farm profitability. Next, a farm-level bioeconomic simulation model is used to analyze the effects of conservation tillage adoption on farm profitability, farm size, and pollutant emissions. Findings are that tillage system, farm size, and crop selection are determined jointly and may substantially improve economic performance of farms. Conservation tillage enables farms to be larger and more specialized, and as a result, farm profitability improves. Statistical analysis of farm panel data is unable to show the effect of tillage on profitability because it neglects to account for endogeneity of variables (or joint effects of tillage, size, crop selection, and performance) in production decisions.  相似文献   

2.
3.
Since intensive farming practices are essential to produce enough food for the increasing population, farmers have been using more inorganic fertilizers, pesticides, and herbicides. Agricultural lands are currently one of the major sources of non-point source pollution. However, by changing farming practices in terms of tillage and crop rotation, the levels of contamination can be reduced and the quality of soil and water resources can be improved. Thus, there is a need to investigate the amalgamated hydrologic effects when various tillage and crop rotation practices are operated in tandem. In this study, the Soil Water Assessment Tool (SWAT) was utilized to evaluate the individual and combined impacts of various farming practices on flow, sediment, ammonia, and total phosphorus loads in the Little Miami River basin. The model was calibrated and validated using the 1990–1994 and 1980–1984 data sets, respectively. The simulated results revealed that the SWAT model provided a good simulation performance. For those tested farming scenarios, no-tillage (NT) offered more environmental benefits than moldboard plowing (MP). Flow, sediment, ammonia, and total phosphorus under NT were lower than those under MP. In terms of crop rotation, continuous soybean and corn–soybean rotation were able to reduce sediment, ammonia, and total phosphorus loads. When the combined effects of tillage and crop rotation were examined, it was found that NT with continuous soybean or corn–soybean rotation could greatly restrain the loss of sediments and nutrients to receiving waters. Since corn–soybean rotation provides higher economic revenue, a combination of NT and corn–soybean rotation can be a viable system for successful farming.  相似文献   

4.
The environmental impacts of agriculture depend on both the longrun and shortrun production decisions of farmers. In the longrun, technologies and quasi-fixed factors are selected and put in place through investment. In the shortrun, production plans are made and implemented conditionally upon available technologies and quasi-fixed factors. An important implication is that the environmental effects of agricultural activities result from an integration of economic decisions, private good production practices and biophysical processes. Viewed from a system perspective, these processes transform a set of private and environmental inputs into a set of private good and environmental outputs. It follows from this logic that the environmental impacts or performance of agriculture result not only from the nature of available technologies, but also how those technical opportunities are exploited in response to market and public policy incentives and constraints. This paper presents results of an application of such an integrated model of biophysical and economic processes to evaluate the potential responsiveness of water quality impacts of agricultural field crop practices to changes in economic incentives.  相似文献   

5.
ABSTRACT: Nonpoint pollution in the form of runoff generated by conventional agricultural practices is one of the major sources of environmental degradation of surface water bodies. Agricultural conservation practices including no‐tillage operations have been introduced as alternatives to cope with such challenges. This study attempts to examine the economic and environmental impacts of no‐tillage as compared to conventional agricultural practices for cotton, soybeans and corn cultivated in the Mississippi Delta. Impacts in the form of sediment, nutrient and pesticide runoff at farm level are investigated, using the Erosion Productivity Impact Calculator (EPIC).  相似文献   

6.
Faced with society's increasing expectations, the Common Agricultural Policy (CAP) review considers environmental management to be an ever more critical criterion in the allocation of farm subsidies. With the goal of evaluating the environmental friendliness of farm practices, France's agricultural research and extension services have built a range of agricultural/environmental diagnostic tools over recent years. The objective of the present paper is to compare the five tools most frequently used in France: IDEA, DIAGE, DIALECTE, DIALOGUE and INDIGO. All the tools have the same purpose: evaluation of the impact of farm practices on the environment via indicators and monitoring of farm management practices. When tested on a sample of large-scale farms in Picardie, the five tools sometimes produced completely different results: for a given farm, the most supposedly significant environmental impacts depend on the tool used. These results lead to differing environmental management plans and raise the question of the methods' pertinence. An analysis grid of diagnostic tools aimed at specifying their field of validity, limits and relevance was drawn up. The resulting comparative analysis enables to define each tool's domain of validity and allows to suggest lines of thought for developing more relevant tools for (i) evaluating a farm's environmental performance and (ii) helping farmers to develop a plan for improving practices within the framework of an environmental management system.  相似文献   

7.
ABSTRACT: The potential surface water and ground water quality tradeoff implications from the nonpoint source provisions of the 1987 Water Quality Act are investigated in this paper using a national linear programming model developed at Iowa State University and modified by the Economic Research Service and the Leaching Evaluation of Agricultural Chemicals (LEACH) Handbook developed by the U.S. Environmental Protection Agency. The linear programming model is used to maximize net farm revenue using optimal combinations of crop rotations and tillage practices for each region of the United States given natural resource constraints. The LEACH handbook is used to determine the relative potential for pesticides to leach below the root zone for different soil types, hydrologic conditions, pesticides used, and tillage practices. The results indicate that imposing a surface water quality erosion constraint aimed at reducing sediment concentrations results in a larger decrease in farm income than imposing a uniform 5 ton per acre per year erosion constraint. Both constraints could result in regional improvement in ground water quality in some regions of the country while decreasing ground water quality in other regions.  相似文献   

8.
Soil microbial populations can fluctuate in response to environmental changes and, therefore, are often used as biological indicators of soil quality. Soil chemical and physical parameters can also be used as indicators because they can vary in response to different management strategies. A long-term field trial was conducted to study the effects of different tillage systems (NT: no tillage, DH: disc harrow, and MP: moldboard plough), P fertilization (diammonium phosphate), and cattle grazing (in terms of crop residue consumption) in maize (Zea mays L.), sunflower (Heliantus annuus L.), and soybean (Glycine max L.) on soil biological, chemical, and physical parameters. The field trial was conducted for four crop years (2000/2001, 2001/2002, 2002/2003, and 2003/2004). Soil populations of Actinomycetes, Trichoderma spp., and Gliocladium spp. were 49% higher under conservation tillage systems, in soil amended with diammonium phosphate (DAP) and not previously grazed. Management practices also influenced soil chemical parameters, especially organic matter content and total N, which were 10% and 55% higher under NT than under MP. Aggregate stability was 61% higher in NT than in MP, 15% higher in P-fertilized soil, and also 9% higher in not grazed strips, bulk density being 12% lower in NT systems compared with MP. DAP application and the absence of grazing also reduced bulk density (3%). Using conservation tillage systems, fertilizing crops with DAP, and avoiding grazing contribute to soil health preservation and enhanced crop production.  相似文献   

9.
To reduce nonpoint source pollution from nutrient, chemical, and sediment runoff, a number of environmental policy standards have been proposed. Such standards could be used to reduce nonpoint source pollution from nutrient, chemical, and sediment runoff to impaired water bodies. State governments can use voluntary approaches to meet nonpoint source pollution reduction goals. However, the practices that lower net returns will not be voluntarily adopted by farmers. Crop rotations and tillage practices may help producers to comply with the environmental standards while minimizing losses in farm profits. This study compares runoff from crop rotation practices and conventional continuous row cropping systems in Mississippi. The results are compared for different tillage systems in order to examine robustness of results. Nutrient runoff and sediment runoff are simulated using the Erosion Productivity Impact Calculator (EPIC). Sensitivity analysis of the sediment and nitrate reductions at 15 percent, 25 percent, and 35 percent are conducted. Under these scenarios, net returns are optimized under environmental constraints, and the marginal cost of sediment reduction ranges from US$1.61 to US$9.63 per ton depending on soil conditions, while the corresponding nitrate and phosphorus reductions costs range from US$1.21 to US$7.08 per kg and from US$0.09 to US$31.91, respectively. The empirical results from this study indicate that a nitrate reduction policy is relatively less costly than a sediment reduction policy. The results also demonstrate the importance of geophysical conditions and policy costs, which vary across regions.  相似文献   

10.
This paper analyses both the processes of adoption and diffusion of the practice of using the chopped residues of pruning as mulch in the olive orchards of the Southern Spanish province of Granada, one of the major olive-producing areas in the world. Many olive groves in the area are located on steep areas where the risk of soil erosion is high. A majority of farmers have adopted no tillage, as an alternative to traditional tillage, combined with either vegetation soil covers or, more frequently, using the chopped pruning residues as mulch. The data used comes from a survey carried out in 2005 to 215 olive farmers. From farmers' responses we estimate a binomial probit model to identify some socio-economic and institutional factors related to the decision to use the practice of mulching on a regular basis. We also estimate several diffusion models that describe the spatial and temporal spread of mulching among farmers. Our results show that mulching using the pruning residues is adopted by 43% of the surveyed farmers. The diffusion process of this practice has been very intense since the middle nineties, and seems to have been based on the interactions among farmers in the area of study rather than in other external source of information. Some of the relevant identified factors that affect the probability of adoption of this practice are farmer's experience, the level of soil degradation in the farm or the continuity of farming by some relative.  相似文献   

11.
12.
Tillage erosion and its effect on soil properties and crop yield in Denmark   总被引:1,自引:0,他引:1  
Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships.  相似文献   

13.
Agri-environment schemes (AESs) have been implemented across EU member states in an attempt to reconcile agricultural production methods with protection of the environment and maintenance of the countryside. To determine the extent to which such policy objectives are being fulfilled, participating countries are obliged to monitor and evaluate the environmental, agricultural and socio-economic impacts of their AESs. However, few evaluations measure precise environmental outcomes and critically, there are no agreed methodologies to evaluate the benefits of particular agri-environmental measures, or to track the environmental consequences of changing agricultural practices. In response to these issues, the Agri-Environmental Footprint project developed a common methodology for assessing the environmental impact of European AES. The Agri-Environmental Footprint Index (AFI) is a farm-level, adaptable methodology that aggregates measurements of agri-environmental indicators based on Multi-Criteria Analysis (MCA) techniques. The method was developed specifically to allow assessment of differences in the environmental performance of farms according to participation in agri-environment schemes. The AFI methodology is constructed so that high values represent good environmental performance. This paper explores the use of the AFI methodology in combination with Farm Business Survey data collected in England for the Farm Accountancy Data Network (FADN), to test whether its use could be extended for the routine surveillance of environmental performance of farming systems using established data sources. Overall, the aim was to measure the environmental impact of three different types of agriculture (arable, lowland livestock and upland livestock) in England and to identify differences in AFI due to participation in agri-environment schemes. However, because farm size, farmer age, level of education and region are also likely to influence the environmental performance of a holding, these factors were also considered. Application of the methodology revealed that only arable holdings participating in agri-environment schemes had a greater environmental performance, although responses differed between regions. Of the other explanatory variables explored, the key factors determining the environmental performance for lowland livestock holdings were farm size, farmer age and level of education. In contrast, the AFI value of upland livestock holdings differed only between regions. The paper demonstrates that the AFI methodology can be used readily with English FADN data and therefore has the potential to be applied more widely to similar data sources routinely collected across the EU-27 in a standardised manner.  相似文献   

14.
Pesticide environmental indicators and environmental policy   总被引:1,自引:0,他引:1  
A current concern in many European countries is the environmental impact of agricultural pesticide usage and appropriate policy development to reduce impact. Currently, relatively hazardous pesticides that might be targeted for replacement by other products or management practices are not positively identified, with consequently few incentives for farmers to choose the least environmentally-risky chemicals. There is a lacuna in terms of widely-agreed operational environmental indicators, and an urgent need for comparative environmental assessment tools for pesticides, for use by both agriculturists and policy-makers. Such a system could, for example, provide a basis on which to differentiate an eco-tax according to the environmental threats posed by each product, and thus improve policy effectiveness. The heterogeneity of pesticide chemicals should be taken into account more explicitly in policy design. Through a comparison of different approaches covered in the literature on pesticide environmental classifications, this paper assesses the feasibility of developing environmental banding to improve the effectiveness of pesticide policy. A more pragmatic approach lies in the development of pesticide groupings rather than a continuous scale of environmental burden, i.e. focusing on broad similarities and differences rather than precise individual ordering. In particular, hazard indicators should be considered further, as a first stage in progress towards comprehensive environmental impact measures.  相似文献   

15.
In the wake of the resource constraints for external farm inputs faced by farmers in developing countries, sustainable agriculture practices that rely on renewable local or farm resources present desirable options for enhancing agriculture productivity. In this study, plot-level data from the semi-arid region of Ethiopia, Tigray are used to investigate the factors influencing farmers' decisions to adopt agriculture practices, with a particular focus on conservation tillage, compost and chemical fertilizer. A trivariate probit model is used to analyze the determinants of adoption of these practices. In addition, stochastic dominance analysis is used to compare the productivity impacts of compost with that of chemical fertilizer based on a six-year cross-sectional farm-level dataset. Our results indicate heterogeneity with regard to the factors that influence adoption decisions of the three practices and the importance of both plot and household characteristics on influencing adoption decisions. In particular, we found that household endowments and access to information, among other factors, impact the choice of sustainable farming practices significantly. Furthermore, the use of stochastic dominance analysis supported the contention that sustainable farming practices enhance productivity. They even proved to be superior to the use of chemical fertilizers — justifying the need to investigate factors that influence adoption of these practices and to use this knowledge to formulate policies that encourage adoption.  相似文献   

16.
Comprehensive assessment of the total greenhouse gas (GHG) budget of reduced tillage agricultural systems must consider emissions of nitrous oxide (N2O) and methane (CH4), each of which have higher global warming potentials than carbon dioxide (CO2). Tillage intensity may also impact nitric oxide (NO) emissions, which can have various environmental and agronomic impacts. In 2003 and 2004, we used chambers to measure N2O, CH4, and NO fluxes from plots that had been managed under differing tillage intensity since 1991. The effect of tillage on non-CO2 GHG emissions varied, in both magnitude and direction, depending on fertilizer practices. Emissions of N2O following broadcast urea (BU) application were higher under no till (NT) and conservation tillage (CsT) compared to conventional tillage (CT). In contrast, following anhydrous ammonia (AA) injection, N2O emissions were higher under CT and CsT compared to NT. Emissions following surface urea ammonium nitrate (UAN) application did not vary with tillage. Total growing season non-CO2 GHG emissions were equivalent to CO2 emissions of 0.15 to 1.9 Mg CO2 ha(-1) yr(-1) or 0.04 to 0.53 Mg soil-C ha(-1) yr(-1). Emissions of N2O from AA-amended plots were two to four times greater than UAN- and BU-amended plots. Total NO + N2O losses in the UAN treatment were approximately 50% lower than AA and BU. This study demonstrates that N2O emissions can represent a substantial component of the total GHG budget of reduced tillage systems, and that interactions between fertilizer and tillage practices can be important in controlling non-CO2 GHG emissions.  相似文献   

17.
Small-holder farmers often develop adaptable agroforestry management techniques to improve and diversify crop production. In the cocoa growing region of Ghana, local knowledge on such farm management holds a noteworthy role in the overall farm development. The documentation and analysis of such knowledge use in cocoa agroforests may afford an applicable framework to determine mechanisms driving farmer preference and indicators in farm management. This study employed 12 in-depth farmer interviews regarding variables in farm management as a unit of analysis and utilized cognitive mapping as a qualitative method of analysis. Our objectives were (1) to illustrate and describe agroforestry management variables and associated farm practices, (2) to determine the scope of decision making of individual farmers, and (3) to investigate the suitability of cognitive mapping as a tool for assessing local knowledge use. Results from the cognitive maps revealed an average of 16 ± 3 variables and 19 ± 3 links between management variables in the farmer cognitive maps. Farmer use of advantageous ecological processes was highly central to farm management (48% of all variables), particularly manipulation of organic matter, shade and food crop establishment, and maintenance of a tree stratum as the most common, highly linked variables. Over 85% of variables included bidirectional arrows, interpreted as farm management practices dominated by controllable factors, insofar as farmers indicated an ability to alter most farm characteristics. Local knowledge use on cocoa production revealed detailed indicators for site evaluation, thus affecting farm preparation and management. Our findings suggest that amid multisourced information under conditions of uncertainty, strategies for adaptable agroforestry management should integrate existing and localized management frameworks and that cognitive mapping provides a tool-based approach to advance such a management support system.  相似文献   

18.
Among greenhouse gases, carbon dioxide (CO(2)) is one of the most significant contributors to regional and global warming as well as climatic change. A field study was conducted to (i) determine the effect of soil characteristics resulting from changes in soil management practices on CO(2) flux from the soil surface to the atmosphere in transitional land from perennial forages to annual crops, and (ii) develop empirical relationships that predict CO(2) flux from soil temperature and soil water content. The CO(2) flux, soil temperature (T(s)), volumetric soil water content (theta(v)) were measured every 1-2 weeks in no-till (NT) and conventional till (CT) malt barley and undisturbed soil grass-alfalfa (UGA) systems in a Lihen sandy loam soil (sandy, mixed, frigid Entic Haplustoll) under irrigated and non-irrigated conditions in western North Dakota. Soil air-filled porosity (epsilon) was calculated from total soil porosity and theta(v) measurements. Significant differences in CO(2) fluxes between land management practices (irrigation and tillage) were observed on some measurement dates. Higher CO(2) fluxes were detected in CT plots than in NT and UGA treatments immediately after rainfall or irrigation. Soil CO(2) fluxes increased with increasing soil moisture (R(2)=0.15, P<0.01) while an exponential relationship was found between CO(2) emission and T(s) (R(2)=0.59). Using a stepwise regression analysis procedure, a significant multiple regression equation was developed between CO(2) flux and theta(v), T(s) (CO(2) [Formula: see text] ; R(2)=0.68, P0.01). Not surprisingly, soil temperature was a driving factor in the equation, which accounted for approximately 59% in variation of CO(2) flux. It was concluded that less intensive tillage, such as no-till or strip tillage, along with careful irrigation management will reduce soil CO(2) evolution from land being converted from perennial forages to annual crops.  相似文献   

19.
One of the potential environmental effects of the recent rapid increase in the global agricultural area cultivated with transgenic crops is a change in soil microbially mediated processes and functions. Among the many essential functions of soil biota are soil organic matter decomposition, nutrient mineralization and immobilization, oxidation-reduction reactions, biological N fixation, and solubilization. However, relatively little research has examined the direct and indirect effects of transgenic crops and their management on microbially mediated nutrient transformations in soils. The objectives of this paper are to review the available literature related to the environmental effects of transgenic crops and their management on soil microbially mediated nutrient transformations, and to consider soil properties and climatic factors that may affect the impact of transgenic crops on these processes. Targeted genetic traits for improved plant nutrition include greater plant tolerance to low Fe availability in alkaline soils, enhanced acquisition of soil inorganic and organic P, and increased assimilation of soil N. Among the potential direct effects of transgenic crops and their management are changes in soil microbial activity due to differences in the amount and composition of root exudates, changes in microbial functions resulting from gene transfer from the transgenic crop, and alteration in microbial populations because of the effects of management practices for transgenic crops, such as pesticide applications, tillage, and application of inorganic and organic fertilizer sources. Possible indirect effects of transgenic crops, including changes in the fate of transgenic crop residues and alterations in land use and rates of soil erosion, deserve further study. Despite widespread public concern, no conclusive evidence has yet been presented that currently released transgenic crops, including both herbicide and pest resistant crops, are causing significant direct effects on stimulating or suppressing soil nutrient transformations in field environments. Further consideration of the effects of a wide range of soil properties, including the amount of clay and its mineralogy, pH, soil structure, and soil organic matter, and variations in climatic conditions, under which transgenic crops may be grown, is needed in evaluating the impact of transgenic crops on soil nutrient transformations. Future environmental evaluation of the impact of the diverse transgenic crops under development could lead to an improved understanding of soil biological functions and processes.  相似文献   

20.
Decisionmakers are in the process of selecting remedial measures for controlling nonpoint pollution runoff. Conservation tillage (CT) is being looked to as one of the major recommended practices. Many different systems exist and vary in the amount of crop residue left and soil roughness produced. Therefore, varying results occur in terms of yield and potential water quality impacts. Differences vary with type of tillage system, soils, geographic region, and the farmer's management. The purpose of this review is to provide material to decisionmakers that points out the assets and liabilities of the various CT systems. Tillage effects on soil characteristics and plant growth are presented and include a discussion of soil moisture and temperature, weed and insect control, nutrient availability, and yields. Water quality aspects are addressed through a discussion of the effects CT systems have on sediment, water, pesticide, and phosphorus loss.This work was supported by the Soil Science Department, College of Agriculture and Life Sciences, University of Wisconsin-Madison, and the U.S. Environmental Protection Agency, Region V, Chicago, Illinois. (Grant No. G005139-01).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号