首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this research project is to develop, test, validate, and demonstrate an analytical framework for assessing regional-scale forest disturbance in the mid-Atlantic region by linking forest disturbance and forest nitrogen export to surface waters at multiple spatial scales. It is hypothesized that excessive nitrogen (N) leakage (export) from forested watersheds is a potentially useful, integrative "indicator" of a negative change in forest function which occurs in synchrony with changes in forest structure and species composition. Our research focuses mainly on forest disturbance associated with recent defoliations by the gypsy moth larva (Lymantria dispar) at spatial scales ranging from small watersheds to the entire Chesapeake Bay watershed. An approach for assessing the magnitude of forest disturbance and its impact on surface water quality will be based on an empirical model relating forest N leakage and gypsy moth defoliation that will be calibrated using data from 25 intensively-monitored forested watersheds in the region and tested using data from more than 60 other forested watersheds in Virginia. Ultimately, the model will be extended to the region using spatially-extensive data describing: 1) the spatial distribution of dominant forest types in the mid-Atlantic region based on both remote sensing imagery and plot-scale vegetation data; 2) the spatial pattern of gypsy moth defoliation of forested areas from aerial mapping; and 3) measurements of dissolved N concentrations in streams from synoptic water quality surveys.  相似文献   

2.
The objective of this study was to assess the applicability of using landscape variables in conjunction with water quality and benthic data to efficiently estimate stream condition of select headwater streams in the Mid-Atlantic Coastal Plains. Eighty-two streams with riffle sites were selected from eight-two independent watersheds across the region for sampling and analyses. Clustering of the watersheds by landscape resulted in three distinct groups (forest, crop, and urban) which coincided with watersheds dominant land cover or use. We used non-parametric analyses to test differences in benthos and water chemistry between groups, and used regression analyses to evaluate responses of benthic communities to water chemistry within each of the landscape groups. We found that typical water chemistry measures associated with urban runoff such as specific conductance and dissolved chloride were significantly higher in the urban group. In the crop group, we found variables commonly associated with farming such as nutrients and pesticides significantly greater than in the other two groups. Regression analyses demonstrated that the numbers of tolerant and facultative macroinvertebrates increased significantly in forested watersheds with small shifts in pollutants, while in human use dominated watersheds the intolerant macroinvertebrates were more sensitive to shifts in chemicals present at lower concentrations. The results from this study suggest that landscape based clustering can be used to link upstream landscape characteristics, water chemistry and biotic integrity in order to assess stream condition and likely cause of degradation without the use of reference sites. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.  相似文献   

3.
Water quality in urban streams and stormwater systems is highly dynamic, both spatially and temporally, and can change drastically during storm events. Infrequent grab samples commonly collected for estimating pollutant loadings are insufficient to characterize water quality in many urban water systems. In situ water quality measurements are being used as surrogates for continuous pollutant load estimates; however, relatively few studies have tested the validity of surrogate indicators in urban stormwater conveyances. In this paper, we describe an observatory aimed at demonstrating the infrastructure required for surrogate monitoring in urban water systems and for capturing the dynamic behavior of stormwater-driven pollutant loads. We describe the instrumentation of multiple, autonomous water quality and quantity monitoring sites within an urban observatory. We also describe smart and adaptive sampling procedures implemented to improve data collection for developing surrogate relationships and for capturing the temporal and spatial variability of pollutant loading events in urban watersheds. Results show that the observatory is able to capture short-duration storm events within multiple catchments and, through inter-site communication, sampling efforts can be synchronized across multiple monitoring sites.  相似文献   

4.
Paleoecological reconstructions of forest stand histories for two upland watersheds at Acadia National Park in Maine were completed to support related watershed chemistry studies. The project hypothesis was that forest type and fire history influence long-term cycling and storage of atmospheric mercury and nitrogen within watersheds. The reconstructions document differences in major vegetation composition and disturbance between the burned and unburned watersheds during the past several centuries. Pollen and charcoal stratigraphies from organic sediment accumulations in forested wet depressions indicate that the present experimental design of contrasting disturbance and forest histories has persisted during recent centuries. The unburned watershed has been dominated by spruce (Picea rubens) and fir (Abies balsamea) for 500 years or more and has not recently burned or been substantially cleared. The burned watershed is dominated by a heterogeneous forest of patchy hardwood, mixed wood, and softwood stands. A large portion of this watershed burned severely in 1947 and probably more than once in the 1800s, and has supported heterogeneous successional forests for 200 years or longer. Overall, these results support the underlying premise that the experimental design of this watershed research can be used to infer landscape controls on biogeochemical processes.  相似文献   

5.
Mountainous areas in the northern Pakistan are blessed by numerous rivers that have great potential in water resources and hydropower production. Many of these rivers are unexploited for their water resource potential. If the potential of these rivers are explored, hydropower production and water supplies in these areas may be improved. The Indus is the main river originating from mountainous area of the Himalayas of Baltistan, Pakistan in which most of the smaller streams drain. In this paper, the hydrology of the mountainous areas in northern Pakistan is studied to estimate flow pattern, long-term trend in river flows, characteristics of the watersheds, and variability in flow and water resource due to impact of climate change. Eight watersheds including Gilgit, Hunza, Shigar, Shyok, Astore, Jhelum, Swat, and Chitral, Pakistan have been studied from 1960 to 2005 to monitor hydrological changes in relation to variability in precipitation, temperature and mean monthly flows, trend of snow melt runoff, analysis of daily hydrographs, water yield and runoff relationship, and flow duration curves. Precipitation from ten meteorological stations in mountainous area of northern Pakistan showed variability in the winter and summer rains and did not indicate a uniform distribution of rains. Review of mean monthly temperature of ten stations suggested that the Upper Indus Basin can be categorized into three hydrological regimes, i.e., high-altitude catchments with large glacierized parts, middle-altitude catchments south of Karakoram, and foothill catchments. Analysis of daily runoff data (1960-2005) of eight watersheds indicated nearly a uniform pattern with much of the runoff in summer (June-August). Impact of climate change on long-term recorded annual runoff of eight watersheds showed fair water flows at the Hunza and Jhelum Rivers while rest of the rivers indicated increased trends in runoff volumes. The study of the water yield availability indicated a minimum trend in Shyok River at Yogo and a maximum trend in Swat River at Kalam. Long-term recorded data used to estimate flow duration curves have shown a uniform trend and are important for hydropower generation for Pakistan which is seriously facing power crisis in last 5 years.  相似文献   

6.
This paper is an overview of this special issue devoted to watershed research in Acadia National Park (Acadia NP). The papers address components of an integrated research program on two upland watersheds at Acadia NP, USA (44° 20′ N latitude; 68° 15′ E longitude). These watersheds were instrumented in 1998 to provide a long-term foundation for regional ecological and watershed research. The research was initiated as part of EPA/NPS PRIMENet (Park Research and Intensive Monitoring of Ecosystems Network), a system of UV-monitoring stations and long-term watershed research sites located in US national parks. The initial goals at Acadia NP were to address research questions about mercury, acid rain, and nitrogen saturation developed from prior research. The project design was based on natural differences in forests and soils induced by an intense wildfire in one watershed in 1947. There is no evidence of fire in the reference watershed for several hundred years. We are testing hypotheses about controls on surface water chemistry, and bioavailability of contaminants in the contrasting watersheds. The unburned 47-ha Hadlock Brook watershed is 70% spruce-fir mature conifer forest. In contrast, burned 32-ha Cadillac Brook watershed, 4 km northeast of the Hadlock watershed, is 20% regenerating mixed northern hardwoods and 60% shrub/rocky balds. Differences in atmospheric deposition are controlled primarily by forest stand composition and age. The watersheds are gauged and have water chemistry stations at 122 m (Cadillac) and 137 m (Hadlock); watershed maximum elevations are 468 and 380 m, respectively. The stream water chemistry patterns reflect, in part, the legacy of the intense fire, which, in turn, controls differences in forest vegetation and soil characteristics. These factors result in higher nitrogen and mercury flux from the unburned watershed, reflecting differences in atmospheric deposition, contrasting ecosystem pools of nitrogen and mercury, and inferred differences in internal cycling and bioavailabilty.  相似文献   

7.
Urban land use has been implicated as a major contributor of nonpoint source pollution in aquatic systems. Through increased nonpoint delivery of pollutants, including constituents found in stormwater, Lake Tahoe is undergoing a marked decline in its transparency, primarily due to increasing production of algae from enhanced nutrient loading and delivery of fine particles to the lake from the watershed. In response to these findings, a regional restoration effort is underway to improve basin watersheds and the water quality in Lake Tahoe. In this study, stormwater autosamplers were used to collect flow-weighted composite samples that characterized event mean concentrations for event and nonevent conditions within a small, urbanized watershed in the Tahoe basin. An event-specified constant-concentration water quality model was then applied to the event mean concentration and continuous streamflow data to estimate pollutant loads for nitrate, nitrite, ammonia, orthophosphate, and suspended sediment. These data were compared with previously reported load estimates from 10 primary monitored streams in larger watersheds of the Tahoe basin. Results from a linear regression analysis demonstrate strong and significant relationships between watershed impervious area and pollutant loadings from Lake Tahoe watersheds. These small, urbanized watersheds and intervening zones, which only comprise 10 % of the total Lake Tahoe drainage area, include a significant portion of the total Lake Tahoe impervious area. The findings of this study suggest that small, urbanized watersheds and intervening zones are disproportionately important contributors of nonpoint source pollution, including nutrients and suspended particles.  相似文献   

8.
9.
The most important function of watersheds in the western U.S. is the capacity to retain soil and water, thereby providing stability in hydrologic head and minimizing stream sediment loads. Long-term soil and water retention varies directly with vegetation cover. Data on ground cover and plant species composition were collected from 129 sites in the Rio Grande drainage of south-central New Mexico. This area was previously assessed by classification of Advanced Very High Resolution Radiometry (AVHRR) imagery. The classification of irreversibly degraded sites failed to identify most of the severely degraded sites based on size of bare patches and 35% of the sites classified as degraded were healthy based on mean bare patch size and vegetation cover. Previous research showed that an index of unvegetated soil (bare patch size and percent of ground without vegetative cover) was the most robust indicator of the soil and water retention function. Although the regression of mean bare patch size on percent bare ground was significant (p < 0.001), percent bare ground accounted for only 11% of the variability in bare patch size. Therefore bare patch size cannot be estimated from data on percent bare ground derived from remote sensing. At sites with less than 25% grass cover, and on sites with more than 15% shrub cover, there were significant relationships between percent bare soil and mean bare patch size (p < 0.05). Several other indicators of ecosystem health were related to mean bare patch size: perennial plant species richness (r = 0.6, p < 0.0001), percent cover of increaser species (r = 0.5, p < 0.0001) and percent cover of forage useable by livestock (r = 0.62, p < 0.0001). There was no relationship between bare patch size and cover of species that are toxic to livestock. In order to assess the ability of western rangeland watersheds to retain soil and water using remote sensing, it will be necessary to detect and estimate sizes of bare patches ranging between at least 0.5 m in diameter to several meters in diameter.  相似文献   

10.
In this study, baseflow and storm discharges were monitored in seven watersheds of varying development density to document the effects of development on stream water quality. In addition, two of the watersheds contained package wastewater treatment facilities, which were evaluated as an alternative to residential on-site septic systems. Monthly grab samples of baseflow and flow-proportional samples of storm event discharge were collected and analyzed for nitrogen, phosphorus, sediment, and bacteria. For the five watersheds without wastewater treatment facilities, a significant linear relationship was documented between fecal coliform and enterococci levels in baseflow samples and the percentage of residential or impervious area. For the two watersheds with wastewater discharge, bacteria levels were significantly greater than those from the two relatively undeveloped watersheds. These results indicate that bacteria levels increased with increasing residential development even if many of the septic systems were replaced by a community wastewater treatment system. Computed annual export rates for ammonia nitrogen (NH3-N) were correlated to the percentage of impervious surfaces in the watersheds, while the rates for other nitrogen forms, total phosphorus, and total suspended sediment were not. Annual export rates from the two mostly undeveloped watersheds were greater than a compilation of rates for undeveloped areas across the USA. Export from the four watersheds with more than 68 % residential land use was less than those reported from local and national studies of residential areas.  相似文献   

11.
Water quality of rivers is strongly influenced by landscape characteristics of their watershed, including land use /cover types, and their spatial configuration. This research evaluates the effects of land cover changes on the water quality of the Zayandehroud River, which is the most important river in the center of Iran. The main goal of this study was to quantify the change in rangelands, forests, and bare lands in the Zayandehroud river basin, which suffered intense human interference, in a period of 11 years (1997–2008), and to evaluate how landscape patterns (including the number of patches, edge density, percentage of rangelands, forests, and bare lands) influence on the 14 water quality indices (including BOD5, EC, NO3, P, and TDS) measured in 10 stations along the river. Results showed that from 1997 to 2008, bare lands increased from 5.8 to 20 %, while rangelands decreased from 70 to 55 % in the whole basin. The results indicated that water quality was significantly correlated with both the proportions and configuration of rangeland and bare land areas. The total edge (TE) of rangeland area had positive effects on water quality, especially on BOD5 and EC. Percentage of landscape (PLAND) and largest patch index (LPI) metrics of rangeland had positive effect on decreasing nutrient (NO3, PO4). The results showed that water quality was more likely degraded when there was high edge density (ED) of bare lands. Results of this study also revealed that degradation of rangeland lead to the degradation of water quality. Finding of this study highlights the importance of rangeland conservation in water quality management at landscape scale.  相似文献   

12.
对南京市1984—2015年Landsat 4/5/7/8卫星TM/ETM+/OLI传感器获取的遥感数据,利用ENVI遥感软件的FLAASH大气校正模块,进行了区域大气能见度( VIS)遥感反演。结果表明,时间跨度达30余年的Landsat卫星遥感数据影像序列反演的VIS呈明显的下降趋势,20世纪80年代数值较高,“差”能见度(<10 km)的观测率不到6%,21世纪以来VIS下降明显,“差”能见度的观测率为20%~25%。与2010—2015年南京市PM10、PM2.5监测数据进行了对比,在城市空气清洁及污染较轻时,星地监测结果有较好的一致性,但中到重污染天气时FLAASH算法反演VIS偏高,侧重于代表离主城区距离远的偏远乡野山林地区的能见度状况。  相似文献   

13.
Nonpoint source pollution loading from an undistributed tropic forest area   总被引:1,自引:0,他引:1  
Water quality and unit nonpoint sources (NPS) pollution load from a forest area were studied in a mountainous watershed in Taiwan. The flow rates were measured with rectangular weirs and samples taken for water quality analysis in both non-rainy and rainy days for 2 years. The subroutine of the Hydrological Simulation Program--FORTRAN was used to simulate runoff for additional 3 years. Total annual loads of various water quality parameters were then estimated by a regression model. Most of the parameter concentrations are higher during the rainy days; their values are typically higher as compared to data from other undisturbed forest areas. Nevertheless, the concentration ratio of dissolved inorganic nitrogen to TN or PO4(3-) -P to TP shows TN or TP no correlations with the flow rates, whereas the concentrations of SS and TP are positively correlated with the flow rate. The fluctuation of annual load from this watershed is significant. For example, six major events of the entire year, for which the total duration is merely 6.4 days, contribute 42% of the annual precipitation and at least 40% of the annual NPS loads. The management for controlling the NPS pollution from this forest watershed is discussed.  相似文献   

14.
Post-fire runoff has the potential to be a large source of contaminants to downstream areas. However, the magnitude of this effect in urban fringe watersheds adjacent to large sources of airborne contaminants is not well documented. The current study investigates the impacts of wildfire on stormwater contaminant loading from the upper Arroyo Seco watershed, burned in 2009. This watershed is adjacent to the Greater Los Angeles, CA, USA area and has not burned in over 60 years. Consequently, it acts as a sink for regional urban pollutants and presents an opportunity to study the impacts of wildfire. Pre- and post-fire storm samples were collected and analyzed for basic cations, trace metals, and total suspended solids. The loss of vegetation and changes in soil properties from the fire greatly increased the magnitude of storm runoff, resulting in sediment-laden floods carrying high concentrations of particulate-bound constituents. Post-fire concentrations and loads were up to three orders of magnitude greater than pre-fire values for many trace metals, including lead and cadmium. A shift was also observed in the timing of chemical delivery, where maximum suspended sediment, trace metal, and cation concentrations coincided with, rather than preceded, peak discharge in the post-fire runoff, amplifying the fire’s impacts on mass loading. The results emphasize the importance of sediment delivery as a primary mechanism for post-fire contaminant transport and suggest that traditional management practices that focus on treating only the early portion of storm runoff may be less effective following wildfire. We also advocate that watersheds impacted by regional urban pollutants have the potential to pose significant risk for downstream communities and ecosystems after fire.  相似文献   

15.
Istanbul is the most populated city of Turkey with a population of around 10.58 M (2000) living on around 5,750 km2. In 1980, the population was only 4.7 M and then it has been more than doubled in only two decades. The population has been increasing as a result of mass immigration. An urbanization process continues and it causes serious increases in urban areas while decreasing the amount of green areas. This rapid, uncontrolled, and illegal urbanization accompanied by insufficient infrastructure has caused degradation of forest and barren lands in the metropolitan area, especially through the last two decades. The watershed basins inside the metropolitan area and the transportation network have accelerated the land-cover changes, which have negative impacts on water quality of the basins. Monitoring urban growth and land cover change will enable better management of this complex urban area by the Greater Istanbul Metropolitan Municipality (GIMM). A temporal assessment of land-cover changes of Istanbul has been documented in this study. The study mainly focuses on the acquisition and analysis of Landsat TM and Landsat GeoCover LC satellite images reflecting the significant land-cover changes between the years of 1990 and 2005. Raster data were converted to vector data and used in Geographic Information Systems (GIS). A database was created for Istanbul metropolitan area to plan, manage, and utilize statistical attribute data covering population, water, forest, industry, and topographic position. Consequently an overlay analysis was carried out and land use/cover changes through years have been detected for the case study area. The capability of Landsat images in determining the alterations in the macro form of the city are also discussed.  相似文献   

16.
A new method for multi-objective optimization of air quality monitoring systems based on satellite remote sensing of the troposphere is described in this work. The technique uses atmospheric turbidity as surrogate for air pollution loading. Through inverse chemical modeling and ancillary information the respective patterns of primary gaseous and particle pollutants are inferred. The optimization algorithm uses the resulting maps of ambient air pollution as input. It focuses on the gain of information with regard to human exposure to high pollution, potential impact on cultural heritage, compliance to ambient air quality standards, monitoring key point and area source emissions, as well as on the associated cost. Application of the method in Brescia, Italy showed its significant potential for improving the cost-effectiveness of air quality monitoring networks at the urban and regional scales.  相似文献   

17.
广东省地表水自动监测系统数据传输协议的设计及应用   总被引:1,自引:0,他引:1  
通过对广东省地表水自动监测系统的软件总体结构、数据传输主流技术等方面的分析,提出数据传输协议的选择和设计方法,以及监测数据类型、远程控制命令、监测项目代码及质量在线控制溯源机制等4大主要数据传输内容。技术成果分别应用在《广东省地表水自动监测系统数据传输规范》的制定、地表水自动监测系统数据传输软件系统的开发、质量控制在线溯源机制的建立和水站智能化改造等方面,取得了良好的社会效益和经济效益。  相似文献   

18.
以《湖北省水环境遥感监测示范系统》为数据处理平台,对2012—2014年湖北省大东湖水网、梁子湖水系和汤逊湖水系共计12个湖泊的水质类别以及营养状态级别进行遥感监测,并对比实测数据进行精度评价。结果表明:遥感监测的梁子湖、豹澥湖和严西湖水质相对较好,杨春湖、北湖和南湖水质相对较差且富营养化状况较为严重。该系统能很好地实现对水质优良达标湖泊以及富营养化湖泊的识别。对示范区域各湖泊水质类别和营养状态级别的遥感监测,基本上能满足业务化运行的需求。个别湖泊遥感监测精度较低,主要表现为遥感监测的湖泊水质类别和营养状态级别均要优于实测的结果。系统对于面积相对较大的湖泊遥感监测精度更高。  相似文献   

19.
简述了1990年—2000年苏州市区水系的变化及京杭运河苏州段沿岸主要工业污染源的变化,对苏州市区水环境质量的变化进行了分析。指出,苏州市区水环境质量的变化主要受水系的改变和污染源防治的共同影响。提出,除继续加强对工业污染源的防治外,还需对水系范围内的生活、农业等方面产生的污染进行防治;在规划水利建设工程时,应将水环境质量的改善与生态建设全面地比较与评价,按其结果再实施工程建设;已建成的环太湖闸在不影响其主要功能的情况下,应保持开启,让优质的太湖水补给运河,从根本上改善苏州市区水环境质量。  相似文献   

20.
Riparian forest restoration has become a major focus of watershed initiatives to improve degraded stream ecosystems. In urban watersheds, however, the ability of riparian forests to improve stream ecosystems may be diminished due to widespread, upland disturbance. This paper presents the methodology and some preliminary results from the first year of fieldwork on a 3-year project designed to assess the ecological benefits of riparian reforestation in urban watersheds. The study is based on an integrated, multidisciplinary sampling of physical, chemical, and biological attributes at forested and non-forested sections of 12 streams with different amounts of urban developement within their watersheds. Restored sections of three streams are also being monitored over the 3-year duration of the project. Sampling and analysis will continue through December 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号