首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Concerns over the possible increase in phytoavailability of biosolids-applied trace metals to plants have been raised based on the assumption that decomposition of applied organic matter would increase phytoavailability. The objectives of this study were to assess the effect of time on chemical extractability and concentration of Cd, Cu, Ni, and Zn in plants on plots established by a single application of biosolids with high trace metals content in 1984. Biosolids were applied to 1.5 by 2.3 m confined plots of a Davidson clay loam (clayey, kaolinitic, thermic Rhodic Kandiudults) at 0, 42, 84, 126, 168, and 210 Mg ha(-1). The highest biosolids application supplied 4.5, 760, 43, and 620 kg ha(-1) of Cd, Cu, Ni, and Zn, respectively. Radish (Raphanus sativus L.), romaine lettuce (Lactuca sativa L. var. longifolia), and barley (Hordeum vulgare L.) were planted at the site for 3 consecutive years, 17 to 19 yr after biosolids application. Extractable Cd, Cu, Ni, and Zn (as measured by DTPA, CaCl(2,) and Mehlich-1) were determined on 15-cm depth samples from each plot. The DTPA-extractable Cu and Zn decreased by 58 and 42%, respectively, 17 yr after application despite a significant reduction in organic matter content. Biosolids treatments had no significant effect on crop yield. Plant tissue metal concentrations increased with biosolids rate but were within the normal range of these crops. Trace metal concentrations in plants generally correlated well with the concentrations extracted from soil with DTPA, CaCl(2), and Mehlich-1. Metal concentrations in plant tissue exhibited a plateau response in most cases. The uptake coefficient values generated for the different crops were in agreement with the values set by the Part 503 Rule.  相似文献   

2.
The levels of copper, zinc, and arsenic in soil surrounding Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] utility poles treated with ammoniacal copper zinc arsenate (ACZA) were investigated at sites in Florida, Virginia, and New York. Copper levels were elevated near the poles and declined with both horizontal distance away from the pole and depth beneath the soil surface. Zinc levels were also elevated next to the poles, but the levels declined more slowly than did those of copper. Arsenic levels were elevated in soil immediately next to the poles but declined to near background levels farther away. The results indicate that metals can leach from ACZA-treated poles, but do not migrate far in the soil, and thus the levels decline sharply with distance from the poles.  相似文献   

3.
Four soil profiles located near a copper smelter in Poland were investigated for the distribution and chemical fractions of Cu, Pb, and Zn and their mobility in relation to soil properties. Contamination with heavy metals was primarily restricted to surface horizons and the extent of contamination was 7- to 115-fold for Cu, 30-fold for Pb, and 6-fold for Zn as compared with subsurface horizons. In the less-contaminated fine-textured soil, the metals were distributed in the order: residual > Fe-Mn oxides occluded > organically complexed > exchangeable and specifically adsorbed, while the order for sandy soils was: residual > organically complexed > Fe-Mn oxides occluded > exchangeable and specifically adsorbed. The contaminated surface horizons of these profiles showed no consistent pattern of metal distribution. However, the common features of highly contaminated soils were very low percentage of residual fraction and the dominance of the NH4OAc extractable fraction. The sum of mobile metal fractions was generally < 10% in subsurface horizons, while in the contaminated surface horizons these fractions made up 50% of the total metal contents. Soil properties contributed more to the relative distribution of the metal fractions in the studied profiles than did the distance and direction to the source of pollution. The amounts of metal extracted by 0.01 M CaCl2 accounted for only a small part of the same metals extracted by NH4OAc. The mobility indexes of metals correlated positively and significantly with the total content of metals and negatively with the clay content.  相似文献   

4.
Irrigation of citrus (Citrus aurantium L. × Citrus paradise Macf.) with urban reclaimed wastewater (RWW) can be economical and conserve fresh water. However, concerns remain regarding its deleterious effects on soil quality. We investigated the ionic speciation (ISP) of RWW and potential impacts of 11 yr of irrigation with RWW on soil quality, compared with well-water (WW) irrigation. Most of nutrients (~53-99%) in RWW are free ionic species and readily available for plant uptake, such as: NH(4+), NO(3-), K(+), Ca(2+), Mg(2+), SO(4)(2-), H(3)BO(3), Cl(-), Fe(2+), Mn(2+), Zn(2+), Co(2+), and Ni(2+), whereas more than about 80% of Cu, Cr, Pb, and Al are complexed with CO(3-), OH(-), and/or organic matter. The RWW irrigation increased the availability and total concentrations of nutrients and nonessential elements, and soil salinity and sodicity by two to three times compared with WW-irrigated soils. Although RWW irrigation changed many soil parameters, no difference in citrus yield was observed. The risk of negative impacts from RWW irrigation on soil quality appears to be minimal because of: (i) adequate quality of RWW, according to USEPA limits; (ii) low concentrations of metals in soil after 11 yr of irrigation with RWW; and (iii) rapid leaching of salts in RWW-irrigated soil during the rainy season.  相似文献   

5.
Detectable levels of dioxins have been reported in biosolids, but very little information is available on the effect of long-term application of biosolids on dioxins accumulation in soil and uptake by plants. We analyzed dioxins in soil and corn tissue samples from field plots after 30 continuous applications of biosolids at 0 (Control), 16.8, and 67.2 Mg biosolids ha(-1) yr(-1) resulting in 0, 504, and 2016 Mg ha(-1) cumulative loadings of biosolids, respectively. The levels of dioxins in soil were only 79.9, 115.5, and 247.5 ng toxic equivalents (TEQs) kg(-1) in the 0, 504, and 2016 Mg biosolids ha(-1) plots, respectively. Dioxins were not detected in the corn grain, and only trace levels (6.8-7.5 ng TEQs kg(-1)) were found in the corn stover; however, these values were not statistically different between control and biosolids-amended soils. These observations suggest that although long-term application of biosolids may increase the levels of dioxins in soil, it does not affect dioxins uptake by corn.  相似文献   

6.
Metals in soils amended with sewage sludge are typically less available compared with those in soils spiked with soluble metal salts. However, it is unclear if this difference remains in the long term. A survey of copper (Cu) availability was made in soils amended with sewage sludge, manure, and compost, collectively named organic amendments. Paired sets of amended and control soils were collected from 22 field trials where the organic amendments had aged up to 112 yr. Amended soils had higher total Cu concentrations (range, 2-220 mg Cu kg; median, 15 mg Cu kg) and organic C (range, 1-16 g kg; median, 4 g kg) than control soils. All samples were freshly spiked with CuCl, and the toxicity of added Cu to barley was compared between amended and control soils. The toxicity of added Cu was significantly lower in amended soils than in control soil in 15 sets by, on average, a factor of 1.4, suggesting that aged amendments do not largely increase Cu binding sites. The fraction of added Cu that is isotopic exchangeable Cu (labile Cu) was compared between control soils freshly spiked with CuCl and amended soils with both soils at identical total Cu concentrations. Copper derived from amendments was significantly less labile (on average 5.9-fold) than freshly added Cu in 18 sets of soils. This study shows that Cu availability after long-term applications of organic amendments is lower than that of freshly added Cu salts, mainly because of its lower availability in the original matrix and ageing reactions than because of increased metal binding sites in soil.  相似文献   

7.
A well-drained soil in N-fertilized dairy pasture was amended with particulate organic carbon (POC), either sawdust or coarse woody mulch, and sampled every 4 wk for a year to test the hypothesis that the addition of POC would increase denitrification activity by increasing the number of microsites where denitrification occurred. Overall mean denitrifying enzyme activity (DEA), on a gravimetric basis, was 100% greater for the woody mulch treatment and 50% greater for the sawdust treatment compared with controls, indicating the denitrifying potential of the soil was enhanced. Despite differences in DEA, no difference in denitrification rate, as measured by the acetylene block technique, was detected among treatments, with an average annual N loss of ~22 kg N ha yr Soil water content overall was driving denitrification in this well-drained soil as regression of the natural log of volumetric soil water content (VWC) against denitrification rate was highly significant ( = 0.74, < 0.001). Addition of the amendments, however, had significant effects on the availability of both C and N. An additional 20 to 40 kg N ha was stored in POC-amended treatments as a result of increases in the microbial biomass. Basal respiration, as a measure of available C, was 400% greater than controls in the sawdust treatment and 250% greater than controls in the mulch. Net N mineralization, however, was significantly lower in the sawdust treatment, resulting in significantly lower nitrate N levels than in the control. We attribute the lack of measured response in denitrification rate to the high temporal variability in denitrification and suggest that diffusion of nitrate may ultimately have limited denitrification in the amended treatments. Our data indicate that manipulation of denitrification by addition of POC may be possible, particularly when nitrate levels are high, but quantifying differences in the rate of denitrification is difficult because of the temporal nature of the process (particularly the complex interaction of N availability and soil water content).  相似文献   

8.
To predict the availability of metals to plants, it is important to understand both solution- and solid-phase processes in the soil, including the kinetics of metal release from its binding agent (ligand and/or particle). The present study examined the speciation and availability of Zn, Cd, Pb, and Cu in a range of well-equilibrated metal-contaminated soils from diverse sources using several techniques as a basis for predicting metal uptake by plants. Wheat (Triticum aestivum L.) was grown in 13 metal-contaminated soils and metal tissue concentrations (Zn, Cd, Pb, and Cu) in plant shoots were compared with total soil metal concentrations, total soluble metal, and free metal activities (pM2+) in soil pore waters, 0.01 M CaCl2-extractable metal concentrations, E values measured by isotope dilution, and effective metal concentrations, C(E), measured by diffusive gradients in thin films (DGT). In the DGT technique, ions are dynamically removed by their diffusion through a gel to a binding resin, while E values represent the isotopically exchangeable (labile) metal pools. Free metal activities (Zn2+, Cd2+, and Pb2+) in soil pore waters were determined using a Donnan dialysis technique. Plant Zn and Cd concentrations were highly related to C(E), while relationships for Zn and Cd with respect to the other measures of metals in the soils were generally lower, except for CaCl2-extractable Cd. These results suggest that the kinetically labile solid-phase pool of metal, which is included in the DGT measurement, played an important role in Zn and Cd uptake by wheat along with the labile metal in soil solution. Plant Pb concentrations were highly related to both soil pore water concentrations and C(E), indicating that supply from the solid phase may not be so important for Pb. Predictions of Cu uptake by wheat from these soils by the various measures of Cu were generally poor, except surprisingly for total Cu.  相似文献   

9.
We studied the fractionation of zinc (Zn) in 49 contaminated soils as influenced by Zn content and soil properties using a seven-step sequential extraction procedure (F1: NH4NO3; F2: NH4-acetate, pH 6; F3: NH3OHCl, pH 6; F4: NH4-EDTA, pH 4.6; F5: NH4-oxalate, pH 3; F6: NH4-oxalate/ascorbic acid, pH 3; F7: residual). The soils had developed from different geologic materials and covered a wide range in soil pH (4.0-7.3), organic C content (9.3-102 g kg(-1)), and clay content (38-451 g kg(-1)). Input of aqueous Zn with runoff water from electricity towers during 26 to 74 yr resulted in total soil Zn contents of 3.8 to 460 mmol kg(-1). In acidic soils (n = 24; pH <6.0), Zn was mainly found in the mobile fraction (F1) and the last two fractions (F6 and F7). In neutral soils (n = 25; pH > or =6.0), most Zn was extracted in the mobilizable fraction (F2) and the intermediate fractions (F4 and F5). The extractability of Zn increased with increasing Zn contamination of the soils. The sum of mobile (F1) and mobilizable (F2) Zn was independent of soil pH, the ratio of Zn in F1 over F1+F2 plotted against soil pH, exhibited the typical shape of a pH sorption edge and markedly increased from pH 6 to pH 5, reflecting the increasing lability of mobilizable Zn with decreasing soil pH. In conclusion, the extractability of Zn from soils contaminated with aqueous Zn after decades of aging under field conditions systematically varied with soil pH and Zn content. The same trends are expected to apply to aqueous Zn released from decomposing Zn-bearing contaminants, such as sewage sludge or smelter slag. The systematic trends in Zn fractionation with varying soil pH and Zn content indicate the paramount effect of these two factors on molecular scale Zn speciation. Further research is required to characterize the link between the fractionation and speciation of Zn and to determine how Zn loading and soil physicochemical properties affect Zn speciation in soils.  相似文献   

10.
Colloid generation and transport in soils is of significance because of suspected colloid-facilitated transport of contaminants to the groundwater. In this study, colloid mobilization and its effect on the transport of arsenite [As(III)] were investigated in Olivier (fine-silty, mixed, active, thermic Aquic Fraglossudalfs) and Windsor (mixed, mesic typic Udipsamments) soil columns. Input solution of 10 mg L(-1) As(III) in 0.01 M NaCl was applied to water-saturated columns, and followed by leaching with deionized water (DIW). Flow interruptions were performed during the As(III) input and DIW leaching phases. Turbidity, electrical conductivity (EC), and pH of column effluents were monitored with time. Total and dissolved concentrations of As, Fe, and Al were analyzed. Effluent results demonstrated that colloid-facilitated transport contributed little to arsenic movement when the solution ionic strength was maintained constant. Mobilization of colloidal amorphous material and enhanced transport of As(III) were observed as a result of changes in ionic strength of the input solution. The peak of colloid generation coincided with peak concentrations of Fe, suggesting mobilization of Fe oxides and facilitated transport of As(III) adsorbed on oxide surfaces. Colloid mobilization was enhanced due to flow interruption in the Olivier column, which suggests slow dissociation of aggregated colloidal particles. Moreover, effluent results indicate significant effect of organic matter in stabilizing aggregates of colloidal particles.  相似文献   

11.
The speciation and distribution of Co in soils is poorly understood. This study was conducted using x-ray absorption spectroscopy (XAS) techniques to examine the influence of soluble cobalt in the +2 oxidation state (Co[II]) aging, submergence-dried cycling, and the presence of in vivo rice roots on the speciation and distribution of added Co(II) in soils. In the aging and submerged-dried cycling studies, Co was found to be associated with Mn oxide fraction (23 to 100% of total Co) and Fe oxide fractions (0 to 77% of total Co) of the soils as either Co(II) species or a mixed Co(II), and Co in the +3 oxidation state (Co[III]) species. The surface speciation of Co in the Mn oxide fraction suggests an innersphere complex was present and the speciation of Co in the Fe oxide fraction was an innersphere surface complex. The in vivo root box experiments showed similar Co speciation in the Mn oxide fraction (13 to 76% of total Co) as the aging and submerged-dried cycling studies. However, the Fe oxide fraction of the soil was unimportant in Co retention. A significant amount (24 to 87% of total Co) of the Co in root box treatments was identified as a Co precipitate. The importance of this finding is that in the presence of rice roots, the Co is redistributed to a Co precipitate. This work confirmed earlier macroscopic work that Mn oxides are important in the sequestration of Co in soils and the influence of roots needs to be taken into account when addressing Co speciation. The information gained from this study will be used to improve models to predict the lability and hence the availability of Co in terrestrial environments.  相似文献   

12.
The effects of saprobe and arbuscular mycorrhizal (AM) fungi on growth, chlorophyll and N, P and K content of Eucalyptus globulus Labill. growing in soil contaminated by heavy metals in the presence or absence of Glycine max were investigated. Glomus mosseae and Glomus deserticola increased dry weight, shoot length, total N, P and K concentration and the quantity of chlorophyll in E. globulus shoots. The protection of Eucalyptus by AM fungi against the action of the heavy metals was more evident when this plant grew as an intercrop with soybean than as a monoculture. The presence of the saprobe fungi Fusarium concolor and Trichoderma koningii further enhanced shoot dry weight, N, P and K content of AM Eucalyptus. The co-inoculation of Eucalyptus with Glomus deserticola and T. koningii was more effective for Cd uptake. In addition, Glomus deserticola enhanced the amount of Pb absorbed by Eucalyptus plants. We showed that it is important to select the most efficient AM and saprobe fungi to stimulate plant growth in heavy-metal-contaminated soil and that the combination of both plays an important role in metal tolerance of Eucalyptus plants.  相似文献   

13.
Shi J  Yu X  Zhang M  Lu S  Wu W  Wu J  Xu J 《Journal of environmental quality》2011,40(6):1695-1704
Heavy metal (copper [Cu], zinc [Zn], and cadmium [Cd]) pollution of soils from pig manures in soil-rice ( L.) systems under intensive farming was investigated, taking Nanhu, China, as the case study area. Two hundred pig manures and 154 rice straws, brown rice samples, and corresponding surface soil (0-15 cm) samples were collected in paddy fields from 150 farms in 16 major villages within the study area. The mean Cu and Zn concentrations in pig manures consistently exceeded the related standard. About 44 and 60% of soil samples exceed the Chinese Soil Cu and Cd Environmental Quality Standards, respectively. The concentration of Cu, Zn, and Cd in brown rice did not exceed the Chinese Food Hygiene Standard. There was a significant positive correlation between total Cu and Zn contents in soil and application rate of pig manures. Strong correlation was observed between the extractable Cu, Zn, and Cd in soil and the Cu, Zn, and Cd contents in the brown rice. The spatial distribution maps of Cu and Zn concentrations in brown rice, straw, and extractable soil Cu and Zn concentration also showed similar geographical trends. Further analyses on heavy metals loading flux and accumulation rates from pig manure applied suggested that Cu and Cd contents in soil currently have already exceeded the maximum permissible limit, and Zn, if still at current manure application rates, will reach the ceiling concentration limits in 9 yr. This study assists in understanding the risk of heavy metals accumulating from pig manure applications to agricultural soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号