首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
Maintaining pasture ground cover is important in preventing environmental degradation of grasslands and associated riparian areas. The objective of this work was to determine the effect of ground cover on sediment and P export from pastured riparian areas under simulated rainfall events. Plots were established on two sites in the North Carolina Piedmont: a 10% slope with Appling sandy loam soils (fine, kaolinitic, thermic Typic Kanhapludults) and a 20% slope with Wedowee sandy loam soils (fine, kaolinitic, thermic Typic Kanhapludults), both with mixed tall fescue (Festuca arundinacea Schreb.)-dallisgrass (Paspalum dilatatum Poir.) vegetation. Existing forage stands were modified to represent a range of ground cover levels: 0, 45, 70, and 95% (bare ground, low, medium, and high cover, respectively), and amended with beef steer (Bos taurus) feces and urine (about 10 kg P ha(-1)). Mean runoff volume from bare ground was generally twice that observed from low, medium, and high levels of cover, which were similar. For all rainfall events combined, export of dissolved reactive P was greatest (P < 0.1) at bare ground and was reduced 31% at low cover, which did not differ from medium or high cover. Mean total Kjeldahl P export was greater (P < 0.001) from bare ground than from other cover levels. Results indicate that riparian bare areas can contribute substantial sediment (>215 kg ha(-1)) and P (0.7 kg P ha(-1)) to surface waters during heavy rainfall, whereas export may be reduced equally well by low cover (45%) as by high cover.  相似文献   

2.
Concern over nonpoint source P losses from agricultural lands to surface waters in frigid climates has focused attention on the role of freezing and thawing on P loss from catch crops (cover crops). This study evaluated the effect of freezing and thawing on the fate of P in bare soils, soils mixed with dairy manure, and soils with an established catch crop of annual ryegrass (Lolium multiflorum L.). Experiments were conducted to evaluate changes in P runoff from packed soil boxes (100 by 20 by 5 cm) and P leaching from intact soil columns (30 cm deep). Before freezing and thawing, total P (TP) in runoff from catch-cropped soils was lower than from manured and bare soils due to lower erosion. Repeated freezing and thawing significantly increased water-extractable P (WEP) from catch crop biomass and resulted in significantly elevated concentrations of dissolved P in runoff (9.7 mg L(-1)) compared with manured (0.18 mg L(-1)) and bare soils (0.14 mg L(-1)). Catch crop WEP was strongly correlated with the number of freeze-thaw cycles. Freezing and thawing did not change the WEP of soils mixed with manures, nor were differences observed in subsurface losses of P between catch-cropped and bare soils before or after manure application. This study illustrates the trade-offs of establishing catch crops in frigid climates, which can enhance P uptake by biomass and reduce erosion potential but increase dissolved P runoff.  相似文献   

3.
The risk of P loss from manured soils is more related to P fractions than total P concentration in manure. This study examined the impact of manure P fractions on P losses from liquid swine manure- (LSM), solid cattle manure- (SCM), and monoammonium phosphate- (MAP) treated soils. Manure or fertilizer was applied at 50 mg P kg soil, mixed, and incubated at 20°C for 6 wk to simulate the interaction between applied P and soil when P is applied well in advance of a high risk period for runoff. Phosphorus fractions in manure were determined using the modified Hedley fractionation scheme. We used simulated rainfall (75 mm h?1 for 1 h) to quantify P losses in runoff from two soils (sand and clay loam). The proportion of total labile P (total P in water+NaHCO fractions) in manure was significantly greater in LSM (70%) than SCM (44%). Mean dissolved reactive P (DRP) load in runoff over 60 min was greatest from MAP-treated soil (18.1 mg tray?1), followed by LSM- (14.0 mg tray?1) and SCM- (11.0 mg tray?1) treated soils, all of which were greater than mean DRP load from the check (5.2 mg tray?1). Total labile P (water+NaHCO) in manure was a more accurate predictor of runoff DRP loads than water extractable P, alone, for these two soils. Therefore, NaHCO extraction of manure P may be a useful tool for managing the risk of manure P runoff losses when manure is applied outside a high risk period for runoff loss.  相似文献   

4.
Riparian buffers are used throughout the world for the protection of water bodies from nonpoint-source nitrogen pollution. Few studies of riparian or treatment wetland denitrification consider the production of nitrous oxide (N2O). The objectives of this research were to ascertain the level of potential N2O production in riparian buffers and identify controlling factors for N2O accumulations within riparian soils of an agricultural watershed in the southeastern Coastal Plain of the USA. Soil samples were obtained from ten sites (site types) with different agronomic management and landscape position. Denitrification enzyme activity (DEA) was measured by the acetylene inhibition method. Nitrous oxide accumulations were measured after incubation with and without acetylene (baseline N2O production). The mean DEA (with acetylene) was 59 microg N2O-N kg(-1) soil h(-1) for all soil samples from the watershed. If no acetylene was added to block conversion of N2O to N2, only 15 microg N2O-N kg(-1) soil h(-1) were accumulated. Half of the samples accumulated no N2O. The highest level of denitrification was found in the soil surface layers and in buffers impacted by either livestock waste or nitrogen from legume production. Nitrous oxide accumulations (with acetylene inhibition) were correlated to soil nitrogen (r2=0.59). Without acetylene inhibition, correlations with soil and site characteristics were lower. Nitrous oxide accumulations were found to be essentially zero, if the soil C/N ratios>25. Soil C/N ratios may be an easily measured and widely applicable parameter for identification of potential hot spots of N2O productions from riparian buffers.  相似文献   

5.
As the number of proposals to divert streamflow for power production has increased in recent years, interest has grown in predicting the impacts of flow reductions on riparian vegetation. Because the extent and density of riparian vegetation depend largely on local geomorphic and hydrologic setting, site-specific geomorphic and hydrologic information is needed. This article describes methods for collecting relevant hydrologic data, and reports the results of such studies on seven stream reaches proposed for hydroelectric development in the eastern Sierra Nevada, California, USA. The methods described are: (a) preparing geomorphic maps from aerial photographs, (b) using well level records to evaluate the influence of streamflow on the riparian water table, (c) taking synoptic flow measurements to identify gaining and losing reaches, and (d) analyzing flow records from an upstream-downstream pair of gages to document seasonal variations in downstream flow losses. In the eastern Sierra Nevada, the geomorphic influences on hydrology and riparian vegetation were pronounced. For example, in a large, U-shaped glacial valley, the width of the riparian strip was highly variable along the study reach and was related to geomorphic controls, whereas the study reaches on alluvial fan deposits had relatively uniform geomorphology and riparian strip width. Flow losses of 20% were typical over reaches on alluvial fans. In a mountain valley, however, one stream gained up to 275% from geomorphically controlled groundwater contributions.  相似文献   

6.
Watershed simulation models can be used to assess agricultural nonpoint-source pollution and for environmental planning and improvement projects. However, before application of any process-based watershed model, the model performance and reliability must be tested with measured data. The Soil and Water Assessment Tool version 2005 (SWAT2005) was used to model sediment and nitrogen loads from the Thomas Brook Watershed, which drains a 7.84 km rural landscape in the Annapolis Valley of Nova Scotia, Canada. The Thomas Brook SWAT model was comprised of 28 subbasins and 265 hydrologic response units, most of them containing agricultural land use, which is the main nonpoint nitrogen source in the watershed. Crop rotation schedules were incorporated into the model using field data collected within Agriculture and Agri-Food Canada's Watershed Evaluation of Beneficial Management Practices program. Model calibration (2004-2006) and validation (2007-2008) were performed on a monthly basis using continuous stream flow, sediment, and nitrogen export measurements. Model performance was evaluated using the coefficient of determination, Nash-Sutcliff efficiency (NSE), and percent bias (PBIAS) statistics. Study results show that the model performance was satisfactory (NSE > 0.4; > 0.5) for stream flow, sediment, nitrate-nitrogen, and total nitrogen simulations. Annual corn, barley, and wheat yields were also simulated well, with PBIAS values ranging from 0.3 to 7.2%. This evaluation of SWAT demonstrated that the model has the potential to be used as a decision support tool for agricultural watershed management in Nova Scotia.  相似文献   

7.
Injection of cattle and swine slurries can provide soil incorporation in no-till and perennial forage production. Injection is expected to substantially reduce N loss due to ammonia (NH3) volatilization, but a portion of that N conservation may be offset by greater denitrification and leaching losses. This paper reviews our current knowledge of the impacts of subsurface application of cattle and swine slurries on the N balance and outlines areas where a greater understanding is needed. Several publications have shown that liquid manure injection using disk openers, chisels, or tines can be expected to Sreduce NH, emissions by at least 40%, and often by 90% or more, relative to broadcast application. However, the limited number of studies that have also measured denitrification losses have shown that increased denitrification with subsurface application can offset as much as half of the N conserved by reducing NH3 emissions. Because the greenhouse gas nitrous oxide (N2O) is one product of denitrification, the possible increases in N2O emission with injection require further consideration. Subsurface manure application generally does not appear to increase leaching potential when manure is applied at recommended rates. Plant utilization of conserved N was shown in only a portion of the published studies, indicating that further work is needed to better synchronize manure N availability and crop uptake. At this time in the United States, the economic and environmental benefits from reducing losses of N as NH3 are expected to outweigh potential liability from increases in denitrification with subsurface manure application. To fully evaluate the trade-offs among manure application methods, a detailed environmental and agricultural economic assessment is needed to estimate the true costs of potential increases in NO2O emissions with manure injection.  相似文献   

8.
Biomass crops are being promoted as environmentally favorable alternatives to fossil fuels or ethanol production from maize (Zea mays L.), particularly across the Corn Belt of the United States. However, there are few if any empirical studies on inorganic N leaching losses from perennial grasses that are harvested on an annual basis, nor has there been empirical evaluation of the hydrologic consequences of perennial cropping systems. Here we report on the results of 4 yr of field measurements of soil moisture and inorganic N leaching from a conventional maize-soybean [Glycine max (L.) Merr.] system and two unfertilized perennial grasses harvested in winter for biomass: Miscanthus x giganteus and switchgrass (Panicum virgatum cv. Cave-in-Rock). All crops were grown on fertile Mollisols in east-central Illinois. Inorganic N leaching was measured with ion exchange resin lysimeters placed 50 cm below the soil surface. Maize--soybean nitrate leaching averaged 40.4 kg N ha(-1) yr(-1), whereas switchgrass and Miscanthus had values of 1.4 and 3.0 kg N ha(-1) yr(-1), respectively. Soil moisture monitoring (to a depth of 90 cm) indicated that both perennial grasses dried the soil out earlier in the growing season compared with maize-soybean. Later in the growing season, soil moisture under switchgrass tended to be greater than maize-soybean or Miscanthus, whereas the soil under Miscanthus was consistently drier than under maize--soybean. Water budget calculations indicated that evapotranspiration from Miscanthus was about 104 mm yr(-1) greater than under maize-soybean, which could reduce annual drainage water flows by 32% in central Illinois. Drainage water is a primary source of surface water flows in the region, and the impact ofextensive Miscanthus production on surface water supplies and aquatic ecosystems deserves further investigation.  相似文献   

9.
In this study, we used chlorofluorocarbon (CFC) age-dating to investigate the geochemistry of N enrichment within a bedrock aquifer depth profile beneath a south central Wisconsin agricultural landscape. Measurement of N(2)O and excess N(2) allowed us to reconstruct the total NO(3)(-) and total nitrogen (TN) leached to ground water and was essential for tracing the separate influences of soil nitrification and ground water denitrification in the collateral geochemical chronology. We identify four geochemical impacts due to a steady ground water N enrichment trajectory (39 +/- 2.2 micromol L(-1) yr(-1), r(2) = 0.96) over two decades (1963-1985) of rapidly escalating N use. First, as a by-product of soil nitrification, N(2)O entered ground water at a stable (r(2) = 0.99) mole ratio of 0.24 +/- 0.007 mole% (N(2)O-N/NO(3)-N). The gathering of excess N(2)O in ground water is a potential concern relative to greenhouse gas emissions and stratospheric ozone depletion after it discharges to surface water. Second, excess N(2) measurements revealed that NO(3)(-) was a prominent, mobile, labile electron acceptor comparable in importance to O(2.) Denitrification transformed 36 +/- 15 mole% (mol mol(-1) x 100) of the total N within the profile to N(2) gas, delaying exceedance of the NO(3)(-) drinking water standard by approximately 6 yr. Third, soil acids produced from nitrification substantially increased the concentrations of major, dolomitic ions (Ca, Mg, HCO(3)(-)) in ground water relative to pre-enrichment conditions. By 1985, concentrations approximately doubled; by 2006, CFC age-date projections suggest concentrations may have tripled. Finally, the nitrification induced mobilization of Ca may have caused a co-release of P from Ca-rich soil surfaces. Dissolved P increased from an approximate background value of 0.02 mg L(-1) in 1963 to 0.07 mg L(-1) in 1985. The CFC age-date projections suggest the concentration could have reached 0.11 mg L(-1) in ground water recharge by 2006. These results highlight an intersection of the N and P cycles potentially important for managing the quality of ground water discharged to surface water.  相似文献   

10.
Management strategy impacts on ammonia volatilization from swine manure   总被引:1,自引:0,他引:1  
Ammonia emitted from manure can have detrimental effects on health, environmental quality, and fertilizer value. The objective of this study was to measure the potential for reduction in ammonia volatilization from swine (Sus scrofa domestica) manure by temperature control, stirring, addition of nitrogen binder (Mohave yucca, Yucca schidigera Roezl ex Ortgies) or urease inhibitor [N-(n-butyl) thiophosphoric triamide (NBPT)], segregation of urine from feces, and pH modification. Swine manure [total solids (TS) = 7.6-11.2%, total Kjeldahl nitrogen (TKN) = 3.3-6.2 g/L, ammonium nitrogen NH(+)(4)-N = 1.0-3.3 g/L] was stored for 24, 48, 72, or 96 h in 2-L polyvinyl chloride vessels. The manure was analyzed to determine pre- and post-storage concentrations of TS and volatile solids (VS), TKN, and NH(+)(4)-N. The concentration of accumulated ammonia N in the vessel headspace (HSAN), post-storage, was measured using grab sample tubes. Headspace NH(3) concentrations were reduced 99.3% by segregation of urine from feces (P < 0.0001). Stirring and NBPT (152 microL/L) increased HSAN concentration (119 and 140%, respectively). Headspace NH(3) concentration increased by 2.7 mg/m(3) for every 1 degree C increase in temperature over 35 degrees C. Slurry NH(+)(4)-N concentrations were reduced by segregation (78.3%) and acidification to pH 5.3 (9.4%), and increased with stirring (4.8%) and increasing temperature (0.06 g/L per 1 degree C increase in temperature over 35 degrees C). Temperature control, urine-feces segregation, and acidification of swine manure are strategies with potential to reduce or slow NH(+)(4)-N formation and NH(3) volatilization.  相似文献   

11.
Federal and state regulations are being promulgated under the Clean Air Act to reduce hazardous air emissions from livestock operations. Few data are available on emissions from livestock facilities in the USA and the management practices that may minimize emissions. The objective of this study was to measure seasonal and bedding impacts on ammonia emissions from tie-stall dairy barns located in central Wisconsin. Four chambers each housed four Holstein dairy heifers (approximately 17 mo of age; body weights, 427-522 kg) for three 28-d trial periods corresponding to winter, summer, and fall. A 4x4 Latin Square statistical design was used to evaluate four bedding types (manure solids, chopped newspaper, pine shavings, and chopped wheat straw) in each chamber for a 4-d ammonia monitoring period. Average ammonia-N emissions (g heifer(-1) d(-1)) during summer (20.4) and fall (21.0) were similar and twice the emissions recorded during winter (10.1). Ammonia-N emissions accounted for approximately 4 to 7% of consumed feed N, 4 to 10% of excreted N, and 9 to 20% of manure ammonical N. Cooler nighttime temperatures did not result in lower ammonia emissions than daytime temperatures. Ammonia emissions (g heifer(-1) d(-1)) from chambers that contained manure solids (20.0), newspaper (18.9), and straw (18.9) were similar and significantly greater than emissions using pine shavings (15.2). Chamber N balances, or percent difference between the inputs feed N and bedding N, and the outputs manure N, body weight N, and ammonia N were 105, 90, and 89% for the winter, summer, and fall trials, respectively. Relatively high chamber N balances and favorable comparisons of study data with published values of ammonia emissions, feed N intake, and manure N excretion provided confidence in the accuracy of the study results.  相似文献   

12.
Biogeochemical processes in riparian zones regulate contaminant movement to receiving waters and often mitigate the impact of upland sources of contaminants on water quality. However, little research has been reported on the microbial process and degradation potential of herbicide in a riparian soil. Field sampling and incubation experiments were conducted to investigate differences in microbial parameters and butachlor degradation in the riparian soil from four plant communities in Chongming Island, China. The results suggested that the rhizosphere soil had significantly higher total organic C and water-soluble organic C relative to the nonrhizosphere soil. Differences in rhizosphere microbial community size and physiological parameters among vegetation types were significant. The rhizosphere soil from the mixed community of Phragmites australis and Acorus calamus had the highest microbial biomass and biochemical activity, followed by A. calamus, P. australis and Zizania aquatica. Microbial ATP, dehydrogenase activity (DHA), and basal soil respiration (BSR) in the rhizosphere of the mixed community of P. australis and A. calamus were 58, 72, and 62% higher, respectively, than in the pure P. australis community. Compared with the rhizosphere soil of the pure plant communities, the mixed community of P. australis and A. calamus displayed a significantly greater degradation rate of butachlor in the rhizosphere soil. Residual butachlor concentrations in rhizosphere soil of the mixed community of P. australis and A. calamus and were 48, 63, and 68% lower than three pure plant communities, respectively. Butachlor degradation rates were positively correlated to microbial ATP, DHA, and BSR, indicating that these microbial parameters may be useful in assessing butachlor degradation potential in the riparian soil.  相似文献   

13.
This 5-yr study compared, via an upstream-downstream experimental design, nutrient and microbial water quality of an intermittent stream running through a small pasture (~2.5 animals ha) where cattle are restricted from the riparian zone (restricted cattle access [RCA]) and where cattle have unrestricted access to the stream (unrestricted cattle access [URCA]). Fencing in the RCA excluded pasturing cattle to within ~3 to 5 m of the stream. Approximately 88% (26/32) of all comparisons of mean contaminant load reduction for lower, higher, and all stream flow conditions during the 5-yr study indicated net contaminant load reductions in the RCA; for the URCA, this percentage was 38% (12/32). For all flow conditions, mean percent load reductions in the RCA for nutrients and bacteria plus F-coliphage were 24 and 23%, respectively. These respective percentages for the URCA were -9 and -57% (positive values are reductions; negative values are increases). However, potentially as a result of protected wildlife habitat in the RCA, the mean percent load reduction for for "all flow" was -321% for the RCA and 60% for the URCA; for , these respective percentages were -209% (RCA) and 73% (URCA). For "all flow" situations, mean load reductions for the RCA were significantly greater ( < 0.1) than those from the URCA for NH-N, dissolved reactive phosphorus (DRP), total coliform, , and . For "high flow" situations, mean load reductions were significantly greater for the RCA for DRP, total coliform, and . For "low flow" conditions, significantly greater mean load reductions were in favor of the RCA for DRP, total P, total coliforms, fecal coliforms, , and . In no case were mean pollutant loads in the URCA significantly higher than RCA pollutant loads. Restricting pasturing livestock to within 3 to 5 m of intermittent streams can improve water quality; however, water quality impairment can occur if livestock have unrestricted access to a stream.  相似文献   

14.
Land application of manure is a common practice in the Upper Midwest of the United States. Recently, there have been concerns regarding the effect of this practice on water quality, especially when manure is applied during winter over frozen soils. A study undertaken on a Rozetta silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs) at Lancaster, WI, evaluated the effects of tillage and timing of manure application on surface and subsurface water quality. The daily scrape and haul liquid dairy manure was applied either in the fall (before snow) or in winter (over snow with frozen soil underneath) to be compared with no manure under two tillage systems (no-till and chisel-plowing). In this paper, we report results on the effects of the above treatments on mineral N leaching. Percolation and mineral N leaching during the nongrowing season were, respectively, 72 and 78% of the annual losses, mainly because of the absence of plant water and N uptake. Percolation was generally higher from no-till compared with chisel-plow but there was no significant effect of tillage on mineral N concentration of the leachate or mineral N losses via leaching. Mineral N leaching was statistically higher from the manure-applied vs. no-manure treatment, but there was no difference between winter-applied manure and no-manure treatments. There were significant tillage by manure interactions with fall manure application followed by chisel-plowing resulting in highest N leaching losses. Averaged over the two years, N leaching rates were 52, 38, and 28 kg N ha(-1) yr(-1) from fall-applied, winter-applied, and no-manure treatments, respectively. These results show that there is substantial N leaching from these soils even when no fertilizer or manure is applied. Furthermore, fall-applied manure followed by fall tillage significantly increases N leaching due to enhanced mineralization of both soil and manure organic N.  相似文献   

15.
A 4-yr (2005-2008) study was conducted to evaluate the potential of pasture water management for controlling nutrient losses in surface runoff in the Northern Everglades. Two pasture water management treatments were investigated on Bahia grass ( Flüggé) pastures: reduced flow and unobstructed flow. The reduced flow treatment was applied to four of eight 20.23-ha pastures by installing water control structures in pasture drainage ditches with flashboards set at a predetermined height. Four other pastures received the unobstructed-flow treatment, in which surface runoff exited pastures unimpeded. Automated instruments measured runoff volume and collected surface water samples for nutrient analysis. In analyzing data for before-after treatment analysis, the 2005 results were removed because of structural failure in water control structures and the 2007 results were removed because of drought conditions. Pasture water retention significantly reduced annual total nitrogen (TN) loads, which were 11.28 kg ha and 6.28 kg ha, respectively, in pastures with unobstructed and reduced flow. Total phosphorus (TP) loads were 27% lower in pastures with reduced flow than in pastures with unobstructed flow, but this difference was not statistically significant. Concentrations of available soil P were significantly greater in pastures with reduced flow. Pasture water retention appears to be an effective approach for reducing runoff volume and TN loads from cattle pastures in the Northern Everglades, but the potential to reduce TP loads may be diminished if higher water table conditions cause increased P release from soils, which could result in higher P concentration in surface runoff.  相似文献   

16.
Use of hog (Sus scrofa) manure as a fertilizer is a practical solution for waste re-utilization, however, it may serve as a vehicle for environmental and domestic animal contamination. Work was conducted to determine whether pathogens, naturally present in hog manure could be detected in cattle (Bos taurus) grazed on the manure-treated pasture, and whether forage contamination occurred. During two 3 mo summer trials manure was applied to yield < or = 124 kg available N per hectare in a single spring or split spring and fall application. Samples of hog manure, forage, soil, and cattle feces were analyzed for naturally occurring Salmonella, Yersinia enterocolitica, and Escherichia coli. To follow movement of Salmonella in the environment isolates were identified to serovar and serotyped. Transfer of E. coli from hog manure to soil and cattle was examined by randomly amplified polymorphic DNA (RAPD) analysis of >600 E. coli isolates. While Y. enterocolitica was absent from all samples, in both years S. enterica Derby and S. enterica Krefeld were found in most hog manure samples, but were only on forage samples in the second year. Salmonella enterica Typhimurium, absent from hog manure was present on some forage in the first year. Cattle feces and soil samples were consistently Salmonella negative. These contaminations could not be traced to manure application. During this study, Salmonella and E. coli found in hog manure had different RAPD genomic profiles from those found in the feces of cattle grazing on manure-treated pasture.  相似文献   

17.
Nitrogen and phosphorus exports from channelizedstream watersheds were elevated over those from nearby natural swamp-stream watersheds. Nitrate exports were significantly greater from channelized-stream watersheds, and higher exports were attributed to faster groundwater drawdown, continual streamflow, and transformation of former floodplain to croplands following channelization. Exports of total organic nitrogen and total nitrogen were also significantly greater from channelized-stream watersheds. Differences in the exports of ammonium, filterable reactive phosphorus, and filterable unreactive phosphorus between the two watershed types were not detectable. Particulate phosphorus exports were significantly higher from channelized-stream watersheds, presumably because of greater erosion potential of nearby croplands and steep channel banks in the altered watersheds. The presence of nonpoint sources of pollution increased watershed exports of nutrients regardless of stream morphology. Examination of nutrient budgets for a portion of swamp floodplain at the base of one natural-stream watershed revealed that changes in local groundwater hydrology and stream morphology associated with channelization appeared to have greater effect on nutrient exports than simply the loss of bordering forested floodplain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号