首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capability of Scirpus maritimus and of Juncus maritimus to accumulate metals and the role of each plant on the physico-chemical composition of sediments, from Douro river estuary (NW Portugal), were investigated through a year of plants' life. The contents of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were determined (by atomic absorption spectrophotometry) in sediment, rhizosediments (those in contact with each plant roots and rhizomes) and different tissues of S. maritimus and of J. maritimus. Both plants influenced the sediment composition (concentrating metals around its roots) and were able to bioaccumulate Cd, in spite of some seasonal variations in the metal levels in the system (both in rhizosediments and plants' roots). Therefore, both plants showed to have potential for Cd phytostabilization. S. maritimus could also concentrate Pb in its roots, probably by sorption on the root surface in (hydr)oxide forms, therefore, denoting capability for Pb phytostabilization.  相似文献   

2.
Peng SH  Wang WX  Li X  Yen YF 《Chemosphere》2004,57(8):839-851
We quantified the concentrations and distributions of metals (Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments of Tuen Mun River, Hong Kong. The potential bioavailability of metals was assessed with a biomimetic extraction method using the sipunculan gut juices. The sediments were characterized by relatively high concentrations of trace metals. Field collected sediments were highly anoxic and the ratio of simultaneously extractable metal (sigmaSEM) to acid volatile sulfide (AVS) was much less than one in these sediments. The majority (>67%) of Cd, Pb, and Zn were bound to AVS, thus their concentrations in the sediment porewater were low. In contrast, Ni was little bound to AVS due to its lower ratios of SEM-Ni to total Ni concentrations. For Cu, relatively high concentrations in the sediment porewater was found, and total organic carbon, AVS and other resistant sulfide phase were the controlling factors for sedimentary Cu partitioning. Net metal adsorption from gut juices to anoxic sediments was observed in metal extraction experiments, suggesting that AVS determined the bioaccumulation and potential bioavailability of most metals in these sediments. Extraction of metals from the oxidized sediments by the gut juices was mainly attributed to metal redistribution from AVS to other geochemical phases. The gut juices were the most effective solvent or extractant than the simple electrolyte solution [I (NaNO(3)) = 0.01 M] and the natural overlying water. Cd was more easily extracted from the oxidized sediments than Zn that tended to have a stronger binding affinity with Fe-Mn oxide, clay and organic matter. The application of partial removal techniques in metal extraction experiments further demonstrated the differential controls of various sediment geochemical phases in affecting metal bioavailability, with the order of TOC > Fe-Mn oxides > carbonate.  相似文献   

3.
Cantwell MG  Burgess RM  King JW 《Chemosphere》2008,73(11):1824-1831
In aquatic systems where metal contaminated sediments are present, the potential exists for metals to be released to the water column when sediment resuspension occurs. The release and partitioning behavior of sediment-bound heavy metals is not well understood during resuspension events. In this study, the release of Cd, Cu, Hg, Ni, Pb and Zn from sediments during resuspension was evaluated using reference sediments with known physical and chemical properties. Sediment treatments with varying quantities of acid volatile sulfide (AVS), total organic carbon (TOC), and different grain size distributions were resuspended under controlled conditions to evaluate their respective effects on dissolved metal concentrations. AVS had the greatest effect on limiting release of dissolved metals, followed by grain size and TOC. Predictions of dissolved concentrations of Cd, Ni, Pb and Zn were developed based on the formulated sediment Σmetal/AVS ratios with Σmetal being the total sediment metal concentration. Predicted values were compared to measured dissolved metal concentrations in contaminated field sediments resuspended under identical operating conditions. Metal concentrations released from the field sediments were low overall, in most cases lower than predicted values, reflecting the importance of other binding phases. Overall, results indicate that for sulfidic sediments, low levels of the study metals are released to the dissolved phase during short-term resuspension.  相似文献   

4.
The concentration partitioning between the sediment particle and the interstitial water phase plays an important role in controlling the toxicity of heavy metals in aquatic systems. The aim of this study was to assess the sediment quality in a polluted area of the Ziya River, Northern China. The contamination potential and bioavailability of six metals were determined from the concentrations of total metals and the bioavailable fractions. The results showed that the concentrations of Cr, Cu, Ni, Zn, and Pb exceeded the probable effect concentration at several sites. The high geoaccumulation indices showed that the sediments were seriously contaminated by Cd. The ratio of acid-volatile sulfide (AVS) to simultaneously extracted metal (SEM) was higher than 1, which indicated that the availability of metals in sediments was low. The risk assessment of interstitial waters confirmed that there was little chance of release of metals associated with acid-volatile sulfide into the water column. Values of the interstitial water criteria toxicity unit indicated that none of the concentrations of the studied metals exceeded the corresponding water quality thresholds of the US Environmental Protection Agency. Positive matrix factorization showed that the major sources of metals were related to anthropogenic activities. Further, if assessments are based on total heavy metal concentrations, the toxicity of heavy metals in sediment may be overestimated.  相似文献   

5.
Simpson SL  Ward D  Strom D  Jolley DF 《Chemosphere》2012,88(8):953-961
Acid-volatile sulfides (AVS) are an important metal-binding phase in sediments. For sediments that contain an excess of AVS over simultaneously extracted metal (SEM) concentrations, acute or chronic effects should not result from the metals Cd, Cu, Ni, Pb and Zn. While AVS phases may exist in surface sediments, the exposure to dissolved oxygen may oxidize the AVS and release metals to more bioavailable forms. We investigated the role of oxidation of AVS, and specifically copper sulfide phases, in surface sediments, in the toxicity to juveniles of the epibenthic amphipod, Melita plumulosa. Sediments containing known amounts of copper sulfide were prepared either in situ by reacting dissolved copper with AVS that had formed in field sediments or created in sediments within the laboratory, or by addition of synthesised CuS to sediments. Regardless of the form of the copper sulfide, considerable oxidation of AVS occurred during the 10-d tests. Sediments that had a molar excess of AVS compared to SEM at the start of the tests, did not always have an excess at the end of the tests. Consistent with the AVS-SEM model, no toxicity was observed for sediments with an excess of AVS throughout the tests. However, the study highlights the need to carefully consider the changes in AVS concentrations during tests, and that measurements of AVS and SEM concentrations should carefully target the materials to which the organisms are being exposed throughout tests, which in the case of juvenile M. plumulosa is the top few mm of the sediments.  相似文献   

6.
Background Acid-volatile sulfide (AVS) is operationally defined as sulfides in sediment, which are soluble in cold acid, and is reported as the most active part of the total sulfur in aquatic sediments. It is a key partitioning phase controlling the activities of divalent cationic heavy metals in sediment. Methods In order to examine this in mangrove environments, six sites were selected along the Jiulong River Estuary in Fujian, China, which had previously been reported to be polluted by heavy metals. Sediments were sampled from 0–60 cm depth at each site, and the spatial distribution of AVS and SEM (simultaneously extracted metals: copper, cadmium, zinc, and lead) were determined. Results and Discussion The results indicate that the AVS concentrations had a spatial variation, ranging from 0.24 to 16.10 μmol g−1 sediment dry weight. The AVS concentration in the surface layer is lower than that of the deeper sediment, with peak values in the 15–30 cm horizon. There was no correlation between the AVS value and organic matter content or total dissolved salts, but a significant positive correlation of AVS with surface sediment (0–5 cm) moisture content was found. This indicates that water logged sediments tend to have a high AVS value. The amount of SEM was within the range of 0.33–2.80 μmol g−1 sediment dry weight and decreased with sediment depth. Conclusions There was a marked variation in AVS and SEM among different sites studied. AVS concentrations were generally lower in the surface sediments, while SEM concentrations slightly decreased with the depth. Higher concentrations of SEM found in the upper layers of the sediments confirm the earlier suggestions that this study area may suffer from increasing heavy metal pollution. Recommendations and Perspectives When monitoring environmental impacts by using AVS, the micro and large-scale spatial variation as well as vertical distribution need to be estimated to avoid misleading results. Both AVS and SEM concentrations in different sediment layers should be taken into account in assessing the potential impact of heavy metals on the biotic environment.  相似文献   

7.
Larner BL  Seen AJ  Palmer AS  Snape I 《Chemosphere》2007,67(10):1967-1974
Previous studies of impacted sites near Casey Station, Antarctica, have revealed elevated concentrations of metals and metalloids, particularly Cd, Cu, Fe, Pb, Sn and Zn in marine sediments. However, attempts to understand the availability and mobility of contaminant elements have not provided a true understanding of speciation. The current work shows, for the first time, that sediments in Brown Bay, an embayment adjacent to the Thala Valley waste disposal site, have elevated concentrations of sulfide, well in excess of that required to bind contaminant metals such as Cd, Cu, Pb and Zn. Furthermore, sediment characterisation using the BCR sequential extraction scheme has shown metal partitioning consistent with sulfides being the controlling factor in metal availability, thus explaining the low porewater concentrations of these metals. The speciation of Sn in Brown Bay, however, is still unclear with the BCR sequential extraction scheme partitioning Sn predominantly into the residual fraction despite Sn being readily extracted by dilute HCl.  相似文献   

8.
Using bio-disturbed sulphide to trace the mobility and transformation of Cu, Pb, Ni and Zn in the sediments of the Spartina alterniflora-dominated salt marsh in the Yangtze River Estuary, measurements were made of the seasonal variations of acid-volatile sulphide (AVS) and of the simultaneously extracted metals (SEM) in the rhizosphere sediments. Microcosm incubation experiments recreating flooding conditions were conducted to evaluate the effect of AVS and other metal binding phases upon the dynamics of Cu, Pb, Ni and Zn in the salt marsh sediments. The results demonstrate that the ratio values of SEM/AVS have a significant seasonal variation in the rhizosphere sediments and that the anoxic conditions in the sediments were likely enhanced by S. alterniflora during the summer and autumn compared with the anoxic conditions resulting from the native species Phragmites australis and Scirpus mariqueter. The incubation experiments suggest that Fe(III) and Mn(IV/III) (hydr)oxides provide important binding sites for heavy metals under oxic conditions, and sulphide provides important binding sites for the Cu and Pb under anoxic conditions. Our observations indicate that the mobility of heavy metals in the salt marsh sediments is strongly influenced by biogeochemical redox processes and that the invasive S. alterniflora may increase the seasonal fluctuation in heavy metal bioavailability in the salt marsh ecosystem.  相似文献   

9.
Yu GB  Liu Y  Yu S  Wu SC  Leung AO  Luo XS  Xu B  Li HB  Wong MH 《Chemosphere》2011,85(6):1080-1087
Numerous indices have been developed to assess environmental risk of heavy metals in surface sediments, including the total content based geoaccumulation index (Igeo), exchangeable fraction based risk assessment code (RAC), and biological toxicity test based sediment quality guidelines (SQGs). In this study, the three indices were applied to freshwater surface sediments from 10 sections along an urbanization gradient of the Grand Canal, China to assess the environmental risks of heavy metals (Cu, Pb, Zn, Cd, and Cr) and to understand discrepancies of risk assessment indices and urbanization effects regarding heavy metal contamination. Results showed that Cd, Zn, and Pb were the most enriched metals in urban sections assessed by Igeo and over 95% of the samples exceeded the Zn and Pb thresholds of the effect range low (ERL) of SQGs. According to RAC, Cu, Zn, Cd, and Cr had high risks of adversely affecting the water quality of the Grand Canal due to their remarkable portions of exchangeable fraction in surface sediment. However, Pb showed a relative low risk, and was largely bounded to Fe/Mn oxides in the urban surface sediments. Obviously, the three assessment indices were not consistent with each other in terms of predicting environmental risks attributed to heavy metals in the freshwater surface sediments of this study. It is recommended that risk assessment by SQGs should be revised according to availability and site specificity. However, the combination of the three indices gave us a comprehensive understanding of heavy metal risks in the urban surface sediments of the Grand Canal.  相似文献   

10.
Factors affecting the transport and retention of Cd, Cr, Cu, Ni, Pb and Zn in acidic groundwaters as they pass through estuarine sediments were investigated using column experiments. Acidic groundwaters caused the rapid dissolution of iron sulfide (AVS) and other iron and manganese phases from sediments that are important for metal binding and buffering. Metal breakthrough to overlying water occurred in the order of Ni>Zn>Cd>Cu>Cr/Pb. Metal transport increased as the sediment permeability increased, reflecting the low resistance to flow caused by larger sand-sized particles and the decreased abundance of metal adsorption sites on these materials. Metal mobility increased as the groundwater pH decreased, as flow rate or metal concentrations increased, and as the exposure duration increased. Groundwater Cr and Pb were promptly attenuated by the sediments, the mobility of Cu was low and decreased rapidly as sediment pH increased above 4.5, while Cd, Ni and Zn were the most easily transported to the surface sediments and released to the overlying waters. For groundwaters of pH 3, metal migration velocities through sandy sediments were generally 0.5-2% (Cr, Pb), 1-6% (Cu) and 4-13% (Cd, Ni, Zn) of the total groundwater velocity (9-700 m/yr). The oxidative precipitation of Fe(II) and Mn(II) in the groundwaters did not affect metal mobility through the sediments. The results indicated that the efflux of acidic and metal-contaminated groundwater through estuarine sediments would affect organisms resident in sandy sediments more greatly than organisms resident in fine-grained, silty, sediments.  相似文献   

11.
In autumn 1986, plants and soil were collected from the lower and the higher salt marsh zones of salt marshes along the Dutch coast. The main purpose was to get an overview of Zn, Cu and Cd concentrations in six dominant species of salt marsh plants. The roots and shoots of the plants were analysed for Zn, Cu and Cd. The highest heavy metal concentrations were found in plants collected from salt marshes near harbour areas and/or that are known to receive contaminated fluvial sediment. Dicotyledonous plant species tended to have similar heavy metal concentrations in roots and shoots, whereas in monocotyledonous species the concentrations in the roots were two to three times higher than in the shoots. Differences in accumulation in the roots between elements and between plant species were found. Cd was accumulated more than Zn or Cu. Triglochin maritima shows a low Cd uptake by roots, whereas Spartina anglica and Scirpus maritimus tend to accumulate it. The fraction of soil particles smaller than 63 microm, loss on ignition and Zn, Cu and Cd concentrations were determined in soil samples. The highest Zn, Cu and Cd concentrations in the soil were found at salt marshes in the Western Scheldt area and were nine, five and 20 times higher than background levels, respectively.  相似文献   

12.
The present study evaluates the relationship between Acid Volatile Sulfides (AVS) and metal accumulation in invertebrates with different feeding behavior and ecological preferences. Natural sediments, pore water and surface water, together with benthic and epibenthic invertebrates were sampled at 28 Flemish lowland rivers. Different metals as well as metal binding sediment characteristics including AVS were measured and multiple regression was used to study their relationship with accumulated metals in the invertebrates taxa.Bioaccumulation in the benthic taxa was primarily influenced by total metal concentrations in the sediment. Regarding the epibenthic taxa metal accumulation was mostly explained by the more bioavailable metal fractions in both the sediment and the water. AVS concentrations were generally better correlated with metal accumulation in the epibenthic invertebrates, rather than with the benthic taxa. Our results indicated that the relation between AVS and metal accumulation in aquatic invertebrates is highly dependent on feeding behavior and ecology.  相似文献   

13.
The equilibration and bioavailability of metals in laboratory-contaminated sediments have been investigated in order to provide better guidance on acceptable procedures for spiking sediments with metals for use in the development of whole-sediment toxicity tests. The equilibration rates of Cd, Cu, Ni and Zn spiked into three estuarine surface sediments with varying properties were investigated. Changes to sediment pH, redox potential, porewater and acid-soluble metals, acid-volatile sulfide and bacterial activity during equilibration, effects of temperature and disturbances following equilibration are reported. The addition of metals to sediments caused major decreases in pH and increases in redox potential as metals displaced iron(II) into the porewaters and added metals and iron (following oxidation) were hydrolyzed. The rates of equilibration of metals in porewaters varied considerably and were dependent on sediment and metal properties. For the oxic/sub-oxic sediments studied, metal-spikes of Cd, Cu, Ni and Zn appeared near equilibrium after 25-45, 10-15, 30-70 and 20-40 days, respectively. Acid-soluble metal concentrations decreased during the equilibration period indicating that the metals become more strongly associated with the sediments with time (less bioavailable). Bacterial activity was greatest in the sediment equilibrated at pH 7 and decreased following the addition of metals. During the equilibration period, bacterial activity increased in sediments equilibrated at pH 6, remained low in sediments at pH 8 and varied erratically in sediments at pH 7. Spiked sediments were shown to equilibrate more slowly at lower temperatures resulting in high porewater metal concentrations. Disturbances to equilibrated sediments because of sample manipulation caused significant iron(II) oxidation and losses of metals from porewaters. The importance of documenting spiking and equilibration procedures and carefully measuring and reporting sediment parameters is highlighted so that contaminant bioavailability and exposure pathways can be interpreted and organism sensitivity accurately determined. Recommendations are given for the preparation of metal-spiked sediments for toxicity testing purposes.  相似文献   

14.
Non-point sources play an important role in metal emissions into surface waters. One of the most important non-point sources is automobile traffic. Recent studies determining traffic related heavy metals in surface waters have concentrated mainly on worst case scenarios by analyzing heavy metal loads in waters and sediments close to storm-water overflow inlets. The present study aims at identifying traffic related heavy metals in moderately polluted sites, as they occur in highly urbanized regions. Therefore, the concentrations of eight traffic related metals (Pt, Sb, Mo, Cd, Pb, Cu, Cr and Zn) were determined in sediment and crustacean samples from eight different aquatic habitats in the Ruhr district, Germany. Traffic related heavy metals could be identified in sediment and biota samples as a combination of heavy metals (Pt, Sb, Cd, Pb for sediments and Pt and Sb for crustacean samples). Pt concentrations received special attention due to the relatively recent occurrence of anthropogenically emitted Pt in the environment. At six sampling sites, Pt was detected in sediment and/or biota samples. The uptake of Pt compared to other traffic related heavy metals by Asellus aquaticus and Gammarus pulex is relatively high and can be compared with the uptake rates of essential metals like Zn.  相似文献   

15.
Heavy metal pollution in sediments of the Pasvik River drainage   总被引:15,自引:0,他引:15  
The purpose of this paper is to study the regional impacts of heavy metals (Ni, Cu, Co, Zn, Cd, Pb, Hg) on the watershed of the Pasvik River. On the basis of sediment investigations at 27 stations of the watershed, background concentrations of the heavy metals, vertical distribution of heavy metals in sediments, heavy metal concentrations in surface sediments, contamination degree, and risk index were determined. The atmospheric emissions of Ni, Cu, Co, Zn, Cd and Hg from the smelters and waste waters from tailing dams and mines of the Pechenganickel Company are likely to be the main sources of increasing concentrations observed in recent sediments of the lower river reaches. Lead showed a different pattern from the other heavy metals--increasing Pb concentrations in the upper sediment layers towards the Norwegian side.  相似文献   

16.
Murakami M  Nakajima F  Furumai H 《Chemosphere》2008,70(11):2099-2109
Infiltration facilities are designed for both the retention of non-point pollutants and the replenishment of groundwater in urban areas. In this study, sorption tests were conducted to evaluate the speciation of heavy metals and their behaviour in infiltration facilities receiving urban road runoff containing high DOC concentrations and stable heavy metal organic complexes. Road dust and three soakaway sediments were collected from heavy traffic areas and a residential area with an infiltration-type sewerage system in Tokyo, Japan. Sequential multiple batch tests were conducted by adding prepared road dust leachate (artificial road runoff) or deionised water to soakaway sediment to obtain soakaway sediment leachate (artificial percolating water from soakaway sediment), which mimicked the sorption by sediments in soakaways receiving urban road runoff. Heavy metal speciation was assessed by means of a combination of anion-exchange resin measurements and MINTEQA2 model calculations, and further validated by chelating resin measurements. In road dust leachates and soakaway sediment leachates, Cu predominantly existed as organic complexes and carbonates, whereas most Mn, Zn and Cd were found to exist in the form of free ions and carbonate complexes. Stable organic complexes of Cu in road dust leachates were strongly adsorbed by soakaway sediments despite the limited adsorption of DOC. On the other hand, desorption of free Mn, Zn and Cd ions from the sediment receiving road dust leachates was observed, indicating that heavy metals such as Mn, Zn and Cd may ultimately reach groundwater as free ions.  相似文献   

17.
Fritioff A  Greger M 《Chemosphere》2006,63(2):220-227
A better understanding of metal uptake and translocation by aquatic plants can be used to enhance the performance of constructed wetland systems for stormwater treatment. Specifically, this study examines whether the uptake of Zn, Cu, Cd, and Pb by Potamogeton natans is via the leaves, stems, or roots, and whether there is translocation from organs of uptake to other plant parts. Competition between the metals at uptake and at the level of the cell wall-bound part of the metals accumulated in stem and leaf tissue was also examined. The results show that Zn, Cu, Cd, and Pb were taken up by the leaves, stems, and roots, with the highest accumulation found in the roots. At the elevated metal concentrations common in stormwater the uptake of Cu, but not of Zn, Cd, or Pb, by the roots was somewhat limited at uptake due to competition with other metals. Between 24% and 59% of the metal content was bound to the cell walls of the plant. Except in the case of Pb, the cell wall-bound fraction was generally smaller in stems than in leaves. No translocation of the metals to other parts of the plant was found, except for Cd which was translocated from leaf to stem and vice versa. Dispersion of metals from sediment to water through P. natans is therefore unlikely.  相似文献   

18.
Site-specific hydrological conditions affect the availability of trace metals for vegetation. In a greenhouse experiment, the effect of submersion on the metal uptake by the wetland plant species Salix cinerea and Populus nigra grown on a contaminated dredged sediment-derived soil and on an uncontaminated soil was evaluated. An upland hydrological regime for the polluted sediment caused elevated Cd concentrations in leaves and cuttings for both species. Emergence and soil oxidation after initial submersion of a polluted sediment resulted in comparable foliar Cd and Zn concentrations for S. cinerea as for the constant upland treatment. The foliar Cd and Zn concentrations were clearly higher than for submerged soils after initial upland conditions. These results point at the importance of submergence-emergence sequence for plant metal availability. The addition of foliar-based organic matter or aluminosilicates to the polluted sediment-derived soil in upland conditions did not decrease Cd and Zn uptake by S. cinerea.  相似文献   

19.
Burton ED  Bush RT  Sullivan LA 《Chemosphere》2006,64(8):1421-1428
This study describes iron and sulfur fractionation, and the related extractability of selected trace elements (As, Cd, Cr, Cu, Ni, Pb and Zn) in estuarine sediments. The sediments were sulfidic, with moderately high concentrations of pore-water sulfide (200-600 micromol l(-1)) and acid-volatile sulfide (AVS; 9.9-129 micromol g(-1)). Pyrite-S concentrations increased with depth, with 63-251 micromol g(-1) at site W1 and 312-669 micromol g(-1) at site W2. The degree of sulfidisation was generally high (>80%), indicating that Fe may be limiting pyrite accumulation. The ratios of AVS to pyrite-S increased with sediment depth, as expected for the pyritisation of solid-phase AVS. Cadmium, Pb and Zn extractability in 1M HCl indicated that these elements are not significantly sequestered during pyritisation, whereas sequestration may be important for As, Cu and possibly Ni. Extractability trends for Cr suggest that diagenesis in sulfidic sediments may enhance Cr reactivity. Overall, replacement of AVS by pyrite during diagenesis may enhance the reactivity of Cd, Cr, Pb and Zn, whereas As, Cu and possibly Ni may be rendered less reactive.  相似文献   

20.
The availability of cadmium (Cd) and zinc (Zn) to sunflower (Helianthus annuus) was investigated in rhamnolipid- and ethylenediaminetetraacetic acid (EDTA)-buffered solutions in order to evaluate the influence of aqueous speciation of the metals on their uptake by the plant, in relation to predictions of uptake by the free ion activity model (FIAM). Free metal ion activity was estimated using the chemical equilibrium program MINTEQ or measured by Donnan dialysis. The uptake of Cd followed the FIAM for the EDTA-buffered solution at EDTA concentrations below 0.4 μM; for the rhamnolipid-buffered solution, the uptake of both metals in roots was not markedly affected by increasing rhamnolipid concentrations in solution. This suggests rhamnolipid enhanced metal accumulation in plant roots (per unit free metal in solution) possibly through formation and uptake of lipophilic complexes. The addition of normal Ca concentrations (low millimetre range) to the rhamnolipid uptake solutions reduced Cd accumulation in shoots by inhibiting Cd translocation, whereas it significantly increased Zn accumulation in shoots. This study confirms that although rhamnolipid could enhance accumulation of Cd in plants roots at low Ca supply, it is not suitable for Cd phytoextraction in contaminated soil environments where Ca concentrations in soil solution are orders of magnitude greater than those of Cd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号