首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Allozyme data are presented for six discrete populations of the giant hydrothermal vent tube worm Riftia pachyptila Jones, 1981 collected throughout the species' known range along mid-ocean spreading ridges of the eastern Pacific Ocean. Contrary to an earlier report, levels of genetic variation are relatively high in this species. Estimates of gene flow based on F-statistics revealed that dispersal throughout the surveyed region is sufficiently high to counter random processes that would lead to losses of genetic diversity and significant population differentiation. R. pachyptila, like other species of tube worms, displays considerable morphologic variation among populations, but this diversity is not reflected in allozyme variation. Vestimentifera, in general, appear to show extensive phenotypic plasticity. In the light of the available genetic data, caution is warranted when making inferences about the taxonomic status of collections based on morphological variation alone. A general decrease in estimated rates of gene flow between geographically more distant populations supports the hypothesis that dispersal in this species follows a stepping-stone model, with exchange between neighboring populations in great excess of long-distance dispersal. High levels of gene flow have been recorded in a variety of vent fauna and may be a prerequisite for success of species found in the ephemeral habitats associated with regions of sea-floor hydrothermal activity.  相似文献   

2.
The fauna of deep-sea hydrothermal vents are among the most isolated and inaccessible biological communities on Earth. Most vent sites can only be visited by subsea vehicles, which can and do move freely among these communities. Researchers assume individuals of the regionally homogeneous vent fauna are killed by the change in hydrostatic pressure the animals experience when the subsea vehicles, which collected them, rise to the surface. After an Alvin dive, we found 38 apparently healthy individuals of a vent limpet in a sample from a hydrothermally inactive area. Prompted by our identification of these specimens as Lepetodrilus gordensis, a species restricted to vents 635 km to the south of our dive site, we tested whether they were from a novel population or were contaminants from the dive made 36 h earlier. The 16S gene sequences, morphology, sex ratio, bacterial colonies, and stable isotopes uniformly indicated the specimens came from the previous dive. We cleaned the sampler, but assumed pressure changes would kill any organisms we did not remove and that the faunas of the 2 areas were nearly identical and disease-free. Our failure to completely clean the gear on the subsea vehicle meant we could have introduced the species and any diseases it carried to a novel location. Our findings suggest that the nearly inaccessible biological communities at deep-sea vents may be vulnerable to anthropogenic alteration, despite their extreme physical conditions.  相似文献   

3.
Animals inhabiting hydrothermal vents and cold seeps face conditions that are challenging for survival. In particular, these two habitats are characterized by chronic hypoxia, sometimes reaching complete anoxia. The characteristics of the scaphognathite and gills were studied in four species of shrimp and three species of crabs from hydrothermal vents and cold seeps, in order to highlight potential adaptations that could enhance oxygen acquisition in comparison with shallow-water relatives. All the vent and seep species studied here exhibit significantly larger scaphognathites, likely allowing more water to flow over their gills per stroke of this appendage. This is probably more energetically efficient that prolonged hyperventilation. In contrast to annelids, vent and seep decapods usually do not possess enlarged gills, a phenomenon likely due to the physical limitations imposed by the size of the gill chamber. In the vent shrimp Rimicaris exoculata and the vent crab Bythograea thermydron, however, there is a significantly higher specific gill surface area linked to a higher number of lamellae per gram of gill. Again in contrast to annelids, the diffusion distance through the gills is not strikingly different between the vent shrimp Alvinocaris komaii and the shallow-water species Palaemon spp. This may indicate that the epithelium and cuticle of the decapod gills are already optimized for oxygen uptake and that reducing the thickness of these compartments is not physically possible without affecting the physical integrity of the gills.  相似文献   

4.
Deep-sea hydrothermal vent ecosystems host both symbiotic and non-symbiotic invertebrates. The non-symbiotic vent fauna is generally assumed to rely on free-living chemoautotrophic bacteria as their main food source but other sources such as detritus have recently been suggested to be a part of the invertebrate diets. Little is known about how food availability influences the distribution of vent organisms on a small scale. In addition, the feeding ecology and role of small, often numerically dominant invertebrates, the meiofauna is poorly understood at vents. In this study, we used stable carbon and nitrogen isotopic analysis to investigate the role of particulate detritus in the diets of macro- and meiobenthic invertebrates within three vent assemblages at Axial Volcano, Juan de Fuca Ridge, and Northeast Pacific. Particulate organic matter of a detrital origin became more important in the diet of invertebrates in assemblages typically associated with low-hydrothermal flow intensities. Meiobenthic species occupied several different feeding guilds and trophic levels in the assemblages investigated. We conclude that small-scale spatial variability in food sources is an important feature of vent food webs and that spatial patterns observed here and elsewhere are shaped by variations in hydrothermal discharge.  相似文献   

5.
A protein electrophoretic survey of mytilids inhabiting deep-sea hydrothermal vents and cold-water methane/sulfide seeps revealed electromorph patterns diagnostic of 10 distinct species. From hydrothermal vents located at sites on the Galápagos Rift, the Mid-Atlantic Ridge, and the Mariana Back Arc Basin, we detected four species of mytilids. Six additional species were detected from three cold-water seep sides in the Gulf of Mexico. The patchy distribution and temporal stability of seeps may provide a greater opportunity for mytilid diversification and persistence than vent sites Nei's genetic distances (D) between species were relatively large (range: 0.528 to ) both within and among habitat types. This pronounced degree of genetic differentiation suggests a relatively ancient common ancestor for the group. Phylogenetic trees were generated using distance Wagner and parsimony analyses of allozyme and morphological characters. The tree topologies obtained from both methods support: (1) the hypothesis that a seep ancestor gave rise to the deep-sea hydrothermal vent mytilids, (2) a historical progression from shallow-water to deep-water habitats, and (3) a co-evolutionary progression from external to internal localization of bacterial symbionts. Whether the seep mytilid taxa constitute paraphyletic or polyphyletic groups remains unresolved. Our phylogenetic hypotheses also provide a benchmark for the phylogeny of mytilid bacterial symbionts.  相似文献   

6.
Despite the apparent absence of geographic barriers, connectivity among marine populations may be restricted by, for example, ecological or behavioral mechanisms. In such cases, populations may show genetic differentiation even over relatively small spatial scales. Here, mitochondrial sequence data from the cytochrome oxidase I (COI) gene and seven polymorphic microsatellite markers were used to investigate fine geographic scale population genetic structure in the snapping shrimp Alpheus angulosus, a member of the A. armillatus species complex, from collections in Florida, Jamaica, and Puerto Rico carried out from 1999 to 2005. The COI data showed a deep divergence that separated these samples into two mitochondrial clades, but this divergence was not supported by the microsatellite data. The COI data reflect past population divergence not reflected in extant population structure on the whole genome level. The microsatellite data also revealed evidence for moderate population structure between populations as close as ∼10 km, and no evidence for isolation by distance, as divergences between near populations were at least as strong as those between more broadly separated populations. Overall, these data suggest a role for restricted gene flow between populations, though the mechanisms that reduce gene flow in this taxon remain unknown.  相似文献   

7.
A multivariate analysis of beta diversity across organisms and environments   总被引:3,自引:0,他引:3  
Soininen J  Lennon JJ  Hillebrand H 《Ecology》2007,88(11):2830-2838
We examined variability in hierarchical beta diversity across ecosystems, geographical gradients, and organism groups using multivariate spatial mixed modeling analysis of two independent data sets. The larger data set comprised reported ratios of regional species richness (RSR) to local species richness (LSR) and the second data set consisted of RSR:LSR ratios derived from nested species-area relationships. There was a negative, albeit relatively weak, relationship between beta diversity and latitude. We found only relatively subtle differences in beta diversity among the realms, yet beta diversity was lower in marine systems than in terrestrial or freshwater realms. Beta diversity varied significantly among organisms' major characteristics such as body mass, trophic position, and dispersal type in the larger data set. Organisms that disperse via seeds had highest beta diversity, and passively dispersed organisms showed the lowest beta diversity. Furthermore, autotrophs had lower beta diversity than organisms higher up the food web; omnivores and carnivores had consistently higher beta diversity. This is evidence that beta diversity is simultaneously controlled by extrinsic factors related to geography and environment, and by intrinsic factors related to organism characteristics.  相似文献   

8.
Genome-size variation in bivalve molluscs determined by flow cytometry   总被引:5,自引:0,他引:5  
Six of the nine described species of the mole crab genus Emerita are distributed in the Americas, two [E. analoga (Stimpson, 1857) and E. rathbunae Schmitt, 1935] on the west coast, and four [E. benedicti Schmitt, 1935, E. brasiliensis Schmitt, 1935, E. portoricensis Schmitt, 1935 and E. talpoida (Say, 1817)] on the east. The presence of an extended planktonic larval stage in all Emerita species suggests high dispersal potential and the possibility of extensive gene flow among conspecific populations. Two taxa were sampled to study the extent of gene flow between widely separated conspecific populations: E. analoga (California and Chile) and E. talpoida (Massachusetts, South Carolina, and the west coast of Florida), while all other taxa were characterized from a single location. Portions of two mitochondrial genes, cytochrome oxidase I (COI) and 16S ribosomal RNA (16S rRNA) were sequenced. For data analysis, approximately 500 bp (COI) and 400 bp (16S rRNA) were examined. Estimated genetic divergence of 5.41% in COI between E. talpoida populations sampled from the Gulf of Mexico and the Atlantic coast, and 3.47% between E. analoga sampled in Chile and California, indicates that in both cases there has been no recent gene flow between disjunct populations. Additional molecular and morphological studies are necessary to decide whether disjunct populations should be accorded specific status. We predict that many marine invertebrates with antitropical distributions similar to E. analoga may consist of sibling species. In contrast to relationships inferred earlier from distribution patterns, parsimony analyses of both COI and 16S rRNA data yield similar phylogenetic trees in which E. analoga is separated from a clade composed of other species in the Americas; a bootstrap value (67%) in the COI inferred tree marginally supports the separation, but the same tree topology with a higher bootstrap value (84%) is obtained with 16S rRNA sequence data. Genetic divergence among the taxa indicates that the Emerita species constitute an old group and that distribution of species has been modified by past climatic and geological events.  相似文献   

9.
Hydrothermal vents are rare deep-sea oases that house faunal assemblages with a similar density of life as coral reefs. Only approximately 600 of these hotspots are known worldwide, most only one-third of a football field in size. With advancing development of the deep-sea mining industry, there is an urgent need to protect these unique, insular ecosystems and their specialist endemic faunas. We applied the IUCN (International Union for the Conservation of Nature) Red List criteria to assess the extinction risk of vent-endemic molluscs with varying exposure to potential deep-sea mining. We assessed 31 species from three key areas under different regulatory frameworks in the Indian, West Pacific, and Southern Oceans. Three vent mollusc species were also examined as case studies of different threat contexts (protected or not from potential mining) to explore the interaction of local regulatory frameworks and IUCN Red List category assignment. We found that these assessments were robust even when there was some uncertainty in the total range of individual species, allowing assessment of species that have only recently been named and described. For vent-endemic species, regulatory changes to area-based management can have a greater impact on IUCN Red List assessment outcomes than incorporating additional data about species distributions. Our approach revealed the most useful IUCN Red List criteria for vent-endemic species: criteria B and D2. This approach, combining regulatory framework and distribution, has the potential to rapidly gauge assessment outcomes for species in insular systems worldwide.  相似文献   

10.
In contrast to specific large benthic invertebrates in chemosynthetic ecosystems such as hydrothermal vents, meiofaunal communities in such habitats have been reported to have strong taxonomic overlap with meiofauna in the adjacent “normal” environments. However, meiofauna have only recently been included in studies of those environments and detailed information on these communities is still rare. This is especially true in the Northwest Pacific Ocean, even though there are many seamounts with active vents in the calderas of the region. Nematode community composition at the genus level in sediments from a hydrothermal vent field in the caldera of Myojin Knoll (32°06′N, 139°52′E, depth 1,300 m), a seamount on the Izu-Ogasawara Arc, Japan, was investigated for the first time and was compared with adjacent non-vent areas inside and outside the caldera. Multivariate analyses showed that the composition of nematodes in the hydrothermal field was significantly different from that in the non-hydrothermal fields around the caldera. However, the common genera, such as Oxystomina, Pareudesmoscolex, Desmoscolex, and Microlaimus were found in two, or all three vent fields while their rank contributions differed among the three fields. When the data from Myojin Knoll were compared with those from other deep-sea vent environments in different regions (e.g., North Fiji Basin, East Pacific Rise, Mid-Atlantic Ridge), the nematode composition in the vent field of the Myojin caldera was more similar to that of the non-vent fields around the caldera than the composition in vent fields of other regions. These data from the Northwest Pacific Ocean also suggest the absence of long-range transport systems and local adaptations for meiofauna in hydrothermal vent fields.  相似文献   

11.
A new type of animal community has been found near hot vents in the subpolar Atlantic at 100 to 106 m depth off Kolbeinsey on the Jan-Mayen ridge. Incubation of high temperature fluids yielded cultures of undescribed hyperthermophilic eu- and archaebacteria, growing in a temperature range between 70° and 110°C depending on the isolates. Bacteria are closely related to species occurring within deep sea hydrothermal areas. In contrast to deep-sea vent sites of the Mid-Atlantic and other oceans, the Kolbeinsey macro- and meiofauna consists of species reported from non-vent areas in the boreal Atlantic and adjacent polar seas. The most abundant forms are a solitary hydroid polyp and two sponges. Kolbeinsey is an isolated and young area of hydrothermal activity at relatively low depth and in highly productive waters; these findings could indicate a model for an early evolutionary step towards the formation of a genuine specialized vent community.  相似文献   

12.
Micro-evolutionary processes that underpin genetic and morphological variation in highly mobile pelagic vertebrates are virtually unknown. Previous findings preferentially invoke vicariant isolation due to large-scale physical barriers such as continental landmasses, followed by genetic drift. However increasingly, evidence for divergence by non-random processes (e.g. selection, plasticity) is being presented. Wedge-tailed shearwaters are wide-ranging seabirds with breeding colonies located such that they experience a variety of environmental pressures and conditions. Previous work on this species has provided evidence of inter-colony divergence of adult morphology and foraging modes, as well as chick developmental patterns, suggesting that reinforcement among colonies is possible. In order to evaluate the micro-evolutionary processes driving this observed variation, our study compared patterns of gene flow with morphological and environmental variation among four colonies of wedge-tailed shearwater breeding within the Indo-Pacific Ocean basin. Estimates of gene flow differed according to the genetic marker used; most likely, this is a function of different mutation rates. Nuclear introns suggest that gene flow among wedge-tailed shearwater breeding colonies within the Indo-Pacific Ocean basin is substantial, however microsatellite markers imply that gene flow is reduced. In general, levels of genetic divergence were relatively low and did not correlate with geographic distance, morphological distance or environmental differences (sea-surface temperature and chlorophyll a concentration) among colonies. We suggest that genetic drift alone is unlikely to be the major source of morphological variation seen in this species. Instead, we propose that non-random processes (selection, plasticity) underpin morphological diversity seen in this and possibly other seabird species.  相似文献   

13.
Crambe crambe is a common encrusting sponge found in the Mediterranean and Atlantic littoral. An analysis of a partial sequence (535 bp) of the mitochondrial DNA (mtDNA) gene cytochrome oxidase subunit I (COI) was conducted in an attempt to determine population structure in this species. This is the first study of population genetics using this kind of marker in the phylum. Samples (N=86) were taken in eight populations separated by distances from 20 to 3,000 km, spanning from the western Mediterranean to the Atlantic. Low variability of this gene was found, as only two haplotypes were identified, along with low nucleotide diversity (=0.0006). However, the different frequencies found among populations revealed genetic structure and low gene flow between close populations, as expected from the dispersal biology of the species. The low variability found in sponges is in agreement with reports on cnidarians and points to a high conservation of mtDNA in diploblastic phyla.  相似文献   

14.
Previous studies have suggested that the high diversity associated with the Norfolk seamounts (Southwest Pacific) could reflect endemism resulting from limited dispersal due to hydrological phenomena. Crustaceans of the family Galatheidae are thoroughly studied in the New Caledonia economic zone permitting the analysis of species distribution pattern between the New Caledonia slope and Norfolk ridge seamounts. This analysis has shown that, qualitatively, the same species are sampled on seamounts and on the New Caledonia slope. Local endemism was never detected. However, on each seamount, and therefore on a small surface, a very high number of species are usually sampled, suggesting that seamounts are biodiversity hot spots. Then, to evaluate whether the seamounts constitute patches of isolated habitat, we explore the pattern of genetic diversity within several species of crustaceans and gastropods. Analysis of the intra-specific genetic structure using the mitochondrial marker COI reveals that populations of two Galatheidae species (Munida thoe and Munida zebra), polymorphic for this marker, are genetically not structured, both among seamounts and between the seamounts and the island slope. The genetic structure over a similar sampling scheme of two Eumunida species (Chirostylidae, the sister family of Galatheidae) and a planktotrophic gastropod (Sassia remensa) reveals a similar pattern. Population structure is observed only in Nassaria problematica, a non-planktotrophic gastropod with limited larvae dispersal. Thus, the limitation of gene flow between seamounts appears to be observed only for species with limited dispersal abilities. Our results suggest that the Norfolk seamounts rather than functioning as areas of endemism, instead, may be highly productive zones that can support numerous species in small areas.  相似文献   

15.
This study used morphological, gut content analysis and carbon- and nitrogen-stable isotope analysis to investigate the trophic structure of upper sublittoral (15–30 m deep) and upper bathyal (200–300 m deep) hydrothermal vents and the adjacent non-vent upper bathyal environment off Kueishan Island. The sublittoral vents host no chemosynthetic fauna, but green and red algae, epibiotic biofilm on crustacean surfaces, and zooplankton form the base of the trophic system. Suspension-feeding sea anemones and the generalist omnivorous vent crab Xenograpsus testudinatus occupy higher trophic levels. The upper bathyal hydrothermal vent is a chemoautotrophic-based system. The vent mussel Bathymodiolus taiwanensis forms a chemosynthetic component of this trophic system. Bacterial biofilm, surface plankton, and algae form the other dietary fractions of the upper bathyal fauna. The vent hermit crab Paragiopagurus ventilatus and the vent crab X. testudinatus are generalist omnivores. The vent-endemic tonguefish Symphurus multimaculatus occupies the top level of the trophic system. The adjacent non-vent upper bathyal region contains decapod crustaceans, which function as either predators or scavengers. The assemblages of X. testudinatus from sublittoral and upper bathyal vents exhibited distinct stable isotope values, suggesting that they feed on different food sources. The upper bathyal Xenograpsus assemblages displayed large variations in their stable isotope values and exhibited an ontogenetic shift in their δ13C and δ15N stable isotope signatures. Some individuals of Xenograpsus exhibited δ15N values close to those of non-vent species, suggesting that the highly mobile Xenograpsus may transfer energy between the upper bathyal hydrothermal vents and the adjacent non-vent upper bathyal environment.  相似文献   

16.
The hamlets are a group of vividly colored fish species of the Serranidae family differentiated only by the color pattern of the body. Although there are divergent views about hamlet taxonomy, experimental and field observations have shown a strong assortative mating, justifying a species status for the different color morphs. Here we analyze the level of evolutionary divergence among six species in respect of mitochondrial DNA, with a view to contrasting the pattern observed with color partitions and previous results obtained with isozymes. The estimated molecular distance among species was low and of the same magnitude as nucleotide diversity within species. Consequently, the net distance and hence the time of divergence between taxa was virtually zero in most comparisons. Although not critically tested, haplotype distribution showed no clear phylogeographic structure, and in many cases the most closely related haplotypes were found at different geographical locations. The absence of differentiated clades between species, based on mitochondrial DNA and isozyme analysis, may have one of two possible origins: a very recent differentiation of species or a lack of absolute barriers to gene flow. However, the available information is insufficient to determine the effect of one or the other, and may require supplementary information from other genes as well as experiments on hybrid fertility. Finally, based on some biological evidence, we suggest that self-fertilization may be an interesting phenomenon to be tested in Hypoplectrus.Communicated by S.A. Poulet, Roscoff  相似文献   

17.
Relatively few insects have invaded the marine environment, and only five species of sea skaters, Halobates Eschscholtz (Hemiptera: Gerridae), have successfully colonized the surface of the open ocean. All five species occur in the Pacific Ocean, H. germanus White also occurs in the Indian Ocean, whereas H. micans Esch- scholtz is the only species found in the Atlantic Ocean. We sequenced a 780 bp long region of the mitochondrial cytochrome oxidase subunit I gene (COI) for a total of 66 specimens of the five oceanic Halobates species. Our purpose was to investigate the genetic variation within species and estimate the amount of gene flow between populations. We defined 27 haplotypes for H. micans and found that haplotype lineages from each of the major oceans occupied by this species are significantly different, having sequences containing five to seven unique base substitutions. We conclude that gene flow between populations of H. micans inhabiting the Atlantic, Pacific, and Indian Ocean is limited and hypothesize that these populations have been separated for 1 to 3 million years. Similarly, there may be limited gene flow between H. germanus populations found in the Pacific and Indian Ocean and between H. sericeus populations inhabiting the northern and southern parts of the Pacific Ocean. Finally, we discuss our findings in relation to recent hypotheses about the influence of oceanic diffusion on the distribution and population structure of oceanic Halobates spp. Received: 29 July 1999 / Accepted: 23 November 1999  相似文献   

18.
Habitat selection by the hydrothermal vent limpet, Lepetodrilus fucensis, in Northeast Pacific hydrothermal vent ecosystems, may influence its reproductive output, as it occupies habitats with varying physico-chemical conditions that reflect the availability of nutritional resources. Histological techniques were used to determine size at first reproduction, gametogenesis, reproductive output, and fecundity in relation to shell length (SL), through examination of the gonads of male and female L. fucensis, collected from five different hydrothermal vent habitat types with different temperature anomalies and hydrothermal fluid flow vigour: vigorous (VIG), diffuse (DIF), tubeworm bushes (TWB), peripheral (PER), and senescent areas (SEN). Both male and female L. fucensis exhibited early maturity, with the first reproductive event occurring at 3.8 and 3.9 mm shell length, respectively. All stages of gamete development were present in the gonads of males and females, suggesting continuous gametogenesis and asynchronous reproduction in this species. Gametogenic maturity of limpets did not vary among actively venting habitats (VIG, DIF, TWB, and PER), but was significantly lower in males and females from SEN habitats. Mean oocyte diameter was largest in females from VIG habitats, and smallest in females from SEN habitats, than in those from the other habitats (DIF, TWB, and PER). Females from actively venting habitats also had greater actual fecundity than those from senescent habitats. While the gametogenic pattern of L. fucensis appears phylogenetically constrained, selection of actively venting habitats by L. fucensis maximizes its reproductive output. The multiple feeding strategies of L. fucensis may allow for a constant supply of energy to be allocated to reproduction in any habitat except senescent vents. Early maturity, high fecundity, and continuous production of gametes suggest a reproductive strategy characteristic of an opportunistic species, and may be contributing to the extremely abundant populations of L. fucensis observed in the Northeast Pacific vent ecosystem.  相似文献   

19.
The European Raja clavata and the South African R. straeleni are marine skates which exhibit highly conserved morphological and ecological traits. Owing to this, taxonomic and evolutionary relationships between the two taxa have not yet fully elucidated. Here, we have tested the hypothesis that restricted gene flow and genetic divergence between these taxa might be associated with climatic/oceanographic discontinuities by surveying genetic variation in ten geographical samples at control region (CR) and amplified fragment length polymorphism (AFLP) loci. The clustering of CR haplotypes in two reciprocally monophyletic clades consistent with taxon zoogeography and the significant AFLP F values between the European and South African populations indicated the two taxa as recently diverged peripatric sibling species. Within each species, significant spatial genetic heterogeneity among samples at both markers revealed population structuring. We argued that structured populations and isolated sibling species might represent two stages of geographical speciation.  相似文献   

20.
The natural flow regimes of rivers worldwide have been heavily altered through anthropogenic activities, and dams in particular have a pervasive effect on riverine ecosystems. Flow-regulation effects of dams negatively affect species diversity and abundance of a variety of aquatic animals, including invertebrates and fishes. However, the effects on semiaquatic animals are relatively unknown. We conducted anuran calling surveys at 42 study locations along the Broad and Pacolet Rivers in South Carolina to address the potential effects of flow regulation by damming on anuran occupancy and abundance. We estimated occupancy and abundance with Program PRESENCE. Models incorporated distance upstream and downstream from the nearest dam as covariates and urbanization pressure as an alternative stressor. Distance from dam was associated with occupancy of 2 of the 9 anuran species in our analyses and with abundance of 6 species. In all cases, distance downstream from nearest dam was a better predictor of occupancy and abundance than distance upstream from nearest dam. For all but one species, distance downstream from nearest dam was positively correlated with both occupancy and abundance. Reduced occupancy and abundance of anurans likely resulted from downstream alterations in flow regime associated with damming, which can lead to reduced area of riparian wetlands that serve as anuran breeding habitat. Our results showed that damming has a strong negative effect on multiple anuran species across large spatial extents and suggest that flow regulation can affect semiaquatic animals occupying riparian zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号