首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing -10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing -10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, -0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, -20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from -50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

2.
Abstract

Air-surface exchange of mercury (Hg) was measured from soil low in Hg (0.013 mg/kg) amended with four different ash materials: a wood ash containing ~10% coal ash (0.070 mg/kg Hg), a mixture of two subbituminous coal fly ashes (0.075 mg/kg Hg), a subbituminous coal ash containing ~10% petroleum coke ash (1.2 mg/kg Hg), and an ash from incinerated municipal sewage sludge (4.3 mg/kg Hg) using a dynamic flux chamber. Ash was added to soil to simulate agricultural supplements, soil stabilization, and pad layers used in livestock areas. For the agricultural amendment, ~0.4% ash was well mixed into the soil. To make the stabilized soil that could be used for construction purposes, ~20% ash was mixed into soil with water. The pad layer consisted of a wetted 1-cm layer of ash material on the soil surface. Diel trends of Hg flux were observed for all of the substrates with significantly higher Hg emissions during the day and negligible flux or deposition of Hg during the night. Hg fluxes, which were measured in the summer months, were best correlated with solar radiation, temperature, and air O3 concentrations. Mean Hg fluxes measured outdoors for unamended soils ranged from 19 to 140 ng/m2 day, whereas those for soil amended with ash to simulate an agricultural application ranged from 7.2 to 230 ng/m2 day. Fluxes for soil stabilized with ash ranged from 77 to 530 ng/m2 day and for soil with pads constructed of ash ranged from ?50 to 90 ng/m2 day. Simple analytical tests (i.e., total Hg content, synthetic precipitation leaching procedure, heating, and indoor gas-exchange experiments) were performed to assess whether algorithms based on these tests could be used to predict Hg fluxes observed outdoors using the flux chamber. Based on this study, no consistent relationships could be developed. More work is needed to assess long-term and seasonal variations in Hg flux from (intact and disturbed) substrates before annual estimates of emissions can be developed.  相似文献   

3.
Previous laboratory studies have shown that lignite-derived fly ash emitted mercury (Hg) to the atmosphere, whereas bituminous- and subbituminous-derived fly ash samples adsorbed Hg from the air. In addition, wet flue gas desulfurization (FGD) materials were found to have higher Hg emission rates than fly ash. This study investigated in situ Hg emissions at a blended bituminous-subbituminous ash landfill in the Great Lakes area and a lignite-derived ash and FGD solids landfill in the Midwestern United States using a dynamic field chamber. Fly ash and saturated FGD materials emitted Hg to atmosphere at low rates (-0.1 to 1.2 ng/ m2hr), whereas FGD material mixed with fly ash and pyrite exhibited higher emission rates (approximately 10 ng/m2hr) but were still comparable with natural background soils (-0.3 to 13 ng/ m2hr). Air temperature, solar radiation, and relative humidity were important factors correlated with measured Hg fluxes. Field study results were not consistent with corresponding laboratory observations in that fluxes measured in the latter were higher and more variable. This is hypothesized to be partially an artifact of the flux measurement methods.  相似文献   

4.
Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg(O)) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from approximately 1-10 ng m(-2) hr(-1) over aged landfill cover, from approximately 8-20 mg/hr from LFG flares (LFG included Hg(O) at microg/m3 concentrations), and from approximately 200-400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(O), the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10-50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.  相似文献   

5.
From July 1999 to January 2000, the total suspended particulate matter (TSP) in the atmosphere collected by high-volume sampler was used to determine the particulate Hg of four function districts and one contrast district in the City of Changchun,China. The study results indicated that the value of the volume-based concentration and the mass-based concentration of each district during the heating period are higher than those of the nonheating period. The volume-based concentration of the urban districts is higher than that of the contrast district. Atmospheric Hg concentrations varied temporally and spatially. TSP is the critical factor of particulate Hg concentration; precipitation is the main meteorological factor affecting Hg (p) concentration in the atmosphere; coal combustion and wind-blown soil material are the important sources of atmospheric particulate Hg. During heating period, the coal combustion makes a greater contribution to Hg(p) than that of wind-blown soil materials.  相似文献   

6.
Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg(o)) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg(o) to the air if it is initially present or formed by chemical reduction of Hg(II) to Hg(o) within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (approximately 100 mg/hr) and from dumpsters in the field (approximately 30 mg/hr for 1000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg(o) signals, indicating that much of the Hg was already present in a metallic (Hg(o)) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg(o), the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg(o) at 10 to >100 microg/hr and continued to act as near constant sources for several days.  相似文献   

7.
A two-resistance exchange interface model (TREIM) was developed to simulate gaseous mercury (Hg) emissions from soils measured by dynamic flux chamber (DFC) operations. The model is based on mass balance principles and a Hg air/soil exchange theory that considers the influence of flushing flow rate on Hg air/soil exchange. We used this model to examine the effect of the flushing flow rate and understand the optimum conditions for DFC measurements of Hg emission fluxes over soils. Our model simulations indicate that the flushing flow rate is a most critical operation condition. We recommend adoption of high flushing flow rates (e.g., ∼15–40 l min−1 for DFCs of common design) based on our simulation findings that underestimation of actual emission fluxes can occur at low flushing flow rates. The biased low fluxes are caused by suppression of emission potential resulting from internal accumulation of emitted Hg and by higher exchange resistance both at low flushing flow rates. This model provides a useful means for estimating maximum steady-state fluxes and soil air Hg concentrations and for adjustment of the fluxes measured under different operating conditions. The model also finds its value in understanding mechanical processes of Hg emissions from soils.  相似文献   

8.
A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from approximately 96% at the inlet of the reactor to approximately 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

9.
A laboratory experiment was carried out to measure volatilisation fluxes of polychlorinated biphenyls (PCBs) from sewage sludge-amended soils. The most commonly practised methods of applying sludge to agricultural land in the UK, namely, surface application, ploughing in to soil and subsurface injection, were simulated inside glass experimental chambers using an anaerobically digested sludge and a sandy loam soil. Humidified air was blown over the surface of the soil/sludge in the chambers for a period of 32 days, in order to sample a sufficient air volume to detect the volatilising PCBs. The resulting PCB volatilisation fluxes from the different sludge application methods were quantified and compared. Volatilisation fluxes of individual congeners were generally highest for the surface sludge (1-cm depth) application and slightly lower for the plough layer (5-cm depth) application. Fluxes from the subsurface layer of sludge (5-cm depth) were only quantified for the lightest congeners near to the end of the experimental run-time. Results from a multiple regression analysis showed that volatilisation fluxes of PCBs from the surface application are highly dependent on both the sludge concentration and the log of the octanol-air partition coefficient (K(OA)). A well-known soil volatilisation model, developed by Jury et al., was adapted and used to predict fluxes for the different sludge application methods during the experiment. The model predicted volatilisation fluxes that were reasonably comparable to measured fluxes for some congeners, but for others predicted fluxes that were more than an order of magnitude lower than measured fluxes. The model predicted similar loss kinetics to those observed in the experiment. Possible reasons for the dissimilarity between measured and predicted fluxes include inaccuracies in model input parameters and the fact that the models were not developed for predicting fluxes from sludge-amended soils.  相似文献   

10.
An assessment of the significance of mercury release from coal fly ash   总被引:1,自引:0,他引:1  
Some mercury (Hg) naturally present in coal is retained in the fly ash remaining after combustion. Concern has been raised regarding the potential for release of this Hg to the environment. The exchange of Hg between fly ash and the atmosphere was measured in the laboratory and in situ at a fly ash landfill. All samples of fly ash used in the laboratory study, with the exception of that derived from lignite-type coal, acted as a sink for atmospheric Hg. Deposition rates were found to increase as air Hg concentrations increased and to decrease with incident light and increased temperature. Addition of water to fly ash samples resulted in re-emission of deposited atmospheric Hg. Deposition was the dominant flux measured in situ at a fly ash landfill. Atmospheric Hg was deposited to all samples collected as part of two demonstration projects using carbon injection for enhanced Hg capture. Hg concentrations of extracts derived using U.S. Environmental Protection Agency Method 1312 (Synthetic Precipitation Leaching Procedure) were < or = 14.4 ng/L. Data developed demonstrate that fly ash, including that collected from Hg removal projects, will release little Hg to the air or water, and under certain conditions, absorbs Hg from the air.  相似文献   

11.
Abstract

Waste distribution and compaction at the working face of municipal waste landfills releases mercury vapor (Hg0) to the atmosphere, as does the flaring of landfill gas. Waste storage and processing before its addition to the landfill also has the potential to release Hg0 to the air if it is initially present or formed by chemical reduction of HgII to Hg0 within collected waste. We measured the release of Hg vapor to the atmosphere during dumpster and transfer station activities and waste storage before landfilling at a municipal landfill operation in central Florida. We also quantified the potential contribution of specific Hg-bearing wastes, including mercury (Hg) thermometers and fluorescent bulbs, and searched for primary Hg sources in sorted wastes at three different landfills. Surprisingly large fluxes were estimated for Hg losses at transfer facilities (~100 mg/hr) and from dumpsters in the field (~30 mg/hr for 1,000 dumpsters), suggesting that Hg emissions occurring before landfilling may constitute a significant fraction of the total emission from the disposal/landfill cycle and a need for more measurements on these sources. Reducing conditions of landfill burial were obviously not needed to generate strong Hg0 signals, indicating that much of the Hg was already present in a metallic (Hg0) form. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. Broken fluorescent bulbs and thermometers in dumpsters emitted Hg0 at 10 to >100 μg/hr and continued to act as near constant sources for several days.  相似文献   

12.
Mercury (Hg) is a toxic element that is emitted to the atmosphere through human activities, mainly fossil fuel combustion. Hg accumulations in soil are associated with atmospheric deposition, while coal-burning power plants remain the most important source of anthropogenic mercury emissions. In this study, we analyzed the Hg concentration in the topsoil of the Kozani–Ptolemais basin where four coal-fired power plants (4,065 MW) run to provide 50 % of electricity in Greece. The study aimed to investigate the extent of soil contamination by Hg using geostatistical techniques to evaluate the presumed Hg enrichment around the four power plants. Hg variability in agricultural soils was evaluated using 276 soil samples from 92 locations covering an area of 1,000 km2. We were surprised to find a low Hg content in soil (range 1–59 μg kg?1) and 50 % of samples with a concentration lower than 6 μg kg?1. The influence of mercury emissions from the four coal-fired power plants on soil was poor or virtually nil. We associate this effect with low Hg contents in the coal (1.5–24.5 μg kg?1) used in the combustion of these power plants (one of the most Hg-poor in the world). Despite anthropic activity in the area, we conclude that Hg content in the agricultural soils of the Kozani–Ptolemais basin is present in low concentrations.  相似文献   

13.
Abstract

Some mercury (Hg) naturally present in coal is retained in the fly ash remaining after combustion. Concern has been raised regarding the potential for release of this Hg to the environment. The exchange of Hg between fly ash and the atmosphere was measured in the laboratory and in situ at a fly ash landfill. All samples of fly ash used in the laboratory study, with the exception of that derived from lignite-type coal, acted as a sink for atmospheric Hg. Deposition rates were found to increase as air Hg concentrations increased and to decrease with incident light and increased temperature. Addition of water to fly ash samples resulted in re-emission of deposited atmospheric Hg. Deposition was the dominant flux measured in situ at a fly ash landfill. Atmospheric Hg was deposited to all samples collected as part of two demonstration projects using carbon injection for enhanced Hg capture. Hg concentrations of extracts derived using U.S. Environmental Protection Agency Method 1312 (Synthetic Precipitation Leaching Procedure) were ≤14.4 ng/L. Data developed demonstrate that fly ash, including that collected from Hg removal projects, will release little Hg to the air or water, and under certain conditions, absorbs Hg from the air.  相似文献   

14.
Abstract

Mercury-bearing material enters municipal landfills from a wide array of sources, including fluorescent lights, batteries, electrical switches, thermometers, and general waste; however, the fate of mercury (Hg) in landfills has not been widely studied. Using automated flux chambers and downwind atmospheric sampling, we quantified the primary pathways of Hg vapor releases to the atmosphere at six municipal landfill operations in Florida. These pathways included landfill gas (LFG) releases from active vent systems, passive emissions from landfill surface covers, and emissions from daily activities at each working face (WF). We spiked the WF at two sites with known Hg sources; these were readily detected downwind, and were used to test our emission modeling approaches. Gaseous elemental mercury (Hg0) was released to the atmosphere at readily detectable rates from all sources measured; rates ranged from ~1–10 ng m?2 hr?1 over aged landfill cover, from ~8–20 mg/hr from LFG flares (LFG included Hg0 at μg/m3 concentrations), and from ~200–400 mg/hr at the WF. These fluxes exceed our earlier published estimates. Attempts to identify specific Hg sources in excavated and sorted waste indicated few readily identifiable sources; because of effective mixing and diffusion of Hg0, the entire waste mass acts as a source. We estimate that atmospheric Hg releases from municipal landfill operations in the state of Florida are on the order of 10–50 kg/yr, substantially larger than our original estimates, but still a small fraction of current overall anthropogenic losses.  相似文献   

15.
The long-term stability of Hg in coal combustion by-products (CCBs) was evaluated at ambient and near-ambient temperatures. Six CCB samples with atypically high levels of total Hg were selected for study assuming a greater potential for release of measurable amounts of Hg vapor. The samples selected included two fly ash samples from U.S. eastern bituminous coal, two fly ash samples from South African low-rank coal, one fly ash from Powder River Basin (PRB) subbituminous coal blended with petroleum coke, and one PRB subbituminous coal fly ash incorporated with flue gas desulfurization material. Air scrubbed of Hg was passed through compacted 100-g aliquots of each sample at 1 mL/min and vented to a gold-coated quartz trap to collect released Hg vapor. The samples were maintained at ambient and near-ambient (37 degrees C) temperatures. All samples released low-picogram levels of Hg after 90 days. No pattern was evident to link the total Hg content to the rate of release of Hg vapor. An average of 0.030 pg Hg/g CCB/day was released from the samples, which equates to 2.2 x 10(-8) lb Hg/ton CCB/year. If this were applied to a coal-fired power plant production of 200,000 tons of fly ash per year, there would be a maximum potential release of 0.0044 lb, or 2.00 g, of Hg per year. Experiments are continuing to determine long-term vapor release of Hg from CCBs. All samples have been set up in duplicate at ambient temperature with an improved apparatus to reevaluate results reported in this article.  相似文献   

16.
Huang J  Liu CK  Huang CS  Fang GC 《Chemosphere》2012,87(5):579-585
Total gaseous mercury (Hg) (TGM), gaseous oxidized Hg (GOM), and particulate-bound Hg (PBM) concentrations and dry depositions were measured at an urban site in central Taiwan. The concentrations were 6.14 ± 3.91 ng m−3, 332 ± 153, and 71.1 ± 46.1 pg m−3, respectively. These results demonstrate high Hg pollution at the ground level in Taiwan. A back trajectory plot shows the sources of the high TGM concentration were in the low atmosphere (<500 m) and approximately 50% of the air masses coming from upper troposphere (>500 m) were associated with low TGM concentrations. This finding implies that Hg is trapped in the low atmosphere and comes from local Hg emission sources. The conditional probability function (CPF) reveals that the plumes of high TGM concentrations come from the south and northwest of the site. The plume from the south comes from two municipal solid waste incinerators (MSWIs). However, no significant Hg point source is located to the northwest of the site; therefore, the plumes from the northwest are hypothesized to be related to the combustion of agricultural waste. Dry deposition fluxes of Hg measured at this site considerably exceeded those measured in North America. Overall, this area is regarded as a highly Hg contaminated area because of local Hg emission sources.  相似文献   

17.
Abstract

The long-term stability of Hg in coal combustion byproducts (CCBs) was evaluated at ambient and near-ambient temperatures. Six CCB samples with atypically high levels of total Hg were selected for study assuming a greater potential for release of measurable amounts of Hg vapor. The samples selected included two fly ash samples from U.S. eastern bituminous coal, two fly ash samples from South African low-rank coal, one fly ash from Powder River Basin (PRB) subbituminous coal blended with petroleum coke, and one PRB subbituminous coal fly ash incorporated with flue gas desulfurization material.

Air scrubbed of Hg was passed through compacted 100-g aliquots of each sample at 1 mL/min and vented to a gold-coated quartz trap to collect released Hg vapor. The samples were maintained at ambient and near-ambient (37 °C) temperatures. All samples released low-picogram levels of Hg after 90 days. No pattern was evident to link the total Hg content to the rate of release of Hg vapor. An average of 0.030 pg Hg/g CCB/day was released from the samples, which equates to 2.2 x 10-8 lb Hg/ton CCB/year. If this were applied to a coal-fired power plant production of 200,000 tons of fly ash per year, there would be a maximum potential release of 0.0044 lb, or 2.00 g, of Hg per year. Experiments are continuing to determine long-term vapor release of Hg from CCBs. All samples have been set up in duplicate at ambient temperature with an improved apparatus to reevalu-ate results reported in this article.  相似文献   

18.
Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+). The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.  相似文献   

19.
Abstract

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from ~96% at the inlet of the reactor to ~80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

20.
Total gaseous mercury (Hg) fluxes from large (7.3×5.5×4.5 m, L×W×D) climate-controlled gas exchange mesocosms (Ecologically Controlled Enclosed Lysimeter Laboratories or EcoCELLs) containing tallgrass prairie soil–plant monoliths were measured from 2002 to 2005. EcoCELL Hg fluxes (calculated based on the difference in air Hg concentrations inside mesocosms and in incoming air, soil area of the monoliths, and airflow through the system) indicated a net annual emission of 102 μg m−2, while soil Hg fluxes measured simultaneously using a dynamic flux chamber were an order of magnitude lower. Since Hg fluxes measured from empty EcoCELLs in winter and when housing the soil–plant monoliths at the same time of year were similar, we hypothesized that the Hg signal generated by the tallgrass prairie soil–plant monoliths was too low to be detected using the EcoCELL technology. Because mesocosm Hg exchange was correlated with solar radiation and temperature, with the largest emissions occurring at midday and in the summer, we also hypothesized that the flux from mesocosm infrastructure would change over time. Limited by the ongoing experiment, the EcoCELLs were manipulated to test the above hypotheses. When monoliths were completely covered and excluded from the exchange with the surrounding air, mesocosm Hg exchange was unaffected. Furthermore, removal of vegetation at the end of each growing season did not affect mesocosm Hg fluxes. Tests with changing mesocosm airflow also indicated that the signal from the tallgrass prairie monoliths was not being measured. These results suggest that, although EcoCELLs performed well in a study using Hg contaminated soils and have been successfully applied to understand processes controlling Hg fluxes, there are limitations of this technology for quantifying Hg exchange from background substrates. Prior to the use of similar systems the detection limit and Hg exchange from an empty system need to be carefully quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号