首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Packaging waste is one of the main sources of secondary polyolefins. It is essential to characterize polyolefins derived from this waste stream in such way, that not only mechanical sorting methods can effectively separate, but also that on-line sensor systems can quantitatively assess their distribution. The characterization methodology is hierarchical, relating all properties of waste particles in any phase of the processing ultimately to the input End-Of-Life products. The present paper documents a pre-concentrate obtained by hand picking of mixed Romanian household waste. Investigations have been addressed to identify the composition of this polyolefin waste stream, to study the polyolefin density distribution, to distinguish the polymer manufacturing methods (i.e. injection molding and blow molding) by flake physical properties and finally to perform all the required characterization and identification by hyperspectral imaging. On the basis of these analyses, polyolefins from packaging wastes can be recycled by density separation and their rheological properties and wall thickness indicate the molding procedures. Hyperspectral imaging based procedures have been also applied to set up quality control actions for recycled products.  相似文献   

2.
As a result of the continuous change in the design and function of consumer electrical and electronic products, the mechanical and material properties of the obsolete products, called waste electric and electronic equipment (WEEE), are highly variable. The variability within WEEE is explained by the number of different appliances, and the heterogeneity in composition of any given appliance.This paper reports on an extended investigation of the properties of WEEE, in particular small appliances. The investigation focuses on the analysis of the composition of about 700 single appliances. Firstly, analytical methods to characterize the waste equipment are described. The results of the experimental analyses show that the mechanical properties, the material composition, the polymer composition and the chemical composition of WEEE vary not only between equipment types with different functions, but also between single appliances within one equipment type. Data on hazardous and valuable substances in selected equipment types are presented.Using detailed data on the composition of individual appliances to calculate rates of recovery for assumed recycling processes demonstrates that the performance of recycling processes depends strongly on the composition of WEEE. Recycling-oriented characterization is, therefore, a systematic approach to support the design and the operation of recycling processes.  相似文献   

3.
The increasing use of plastics in packaging materials leads to growing amounts of plastic waste. Recycling material is generally regarded as advantageous. But in fact very few products are made from plastic waste, partly this can be explained by that little is known about the recycling process and the properties of collected materials. There is a need for injection moulding grades of recycled polyethylene, while large amounts of extrusion grades are available from packaging waste. A controlled way of de-branching or partly degrading PE would be desirable. Peroxides are commonly used to crosslink polyolefins, but under certain conditions a chain scission reaction occur. Another problem encountered with recycling of polyethylene are the poor miscibility of low amounts contaminations, i. e. polypropylene. A compatibilizer can improve properties of such polymer blends, in this work EPDM is used as compatibilzer. Studies of mechanical properties and viscosity measurements show that it is possible to partly degrade PE with peroxide exposing it to high temperature and oxygen. The properties of PE/PP blends were improved with EPDM as compatibilizer.  相似文献   

4.
Optimizing a recycling process of SMC composite waste   总被引:1,自引:0,他引:1  
Investigations about the recycling of sheet moulding compounds (SMC) waste as incorporation material for thermoplastic polymer matrix are reported in this paper. A new efficient process is developed in order to strongly increase the reinforcement glass fraction of SMC leading to good mechanical performance of the new thermoplastic compounds. The overall process is composed of two main steps: mechanical and chemical. The second stage is characterised in terms of optimization and capability by means of experimental design and statistical process control techniques for finding the optimal chemical conditions and validating the process.  相似文献   

5.
The manufacturing industry produces a lot of different by-products and waste. In this research, the utilization of different industrial wastes as a part of wood-plastic composites was tested. Limestone waste and carton cutting waste were tested by replacing part of the reinforcing fibers of the composite with these materials. The materials were made with the extrusion process, and they were tested for their mechanical properties, water absorption and thickness swelling. The materials were also viewed with a scanning electron microscope. The results showed that both industrial wastes affected the properties of the composite. Mining waste in the composite improved the moisture properties, impact strength and hardness of the material. Carton cutting waste improved the impact strength remarkably.  相似文献   

6.
The demand for biodegradable plastic material is increasing worldwide. However, the cost remains high in comparison with common forms of plastic. Requirements comprise low cost, good UV-stability and mechanical properties, as well as solubility and water uptake lead to the preparation of multi-component polymer blends based on polyvinyl alcohol and starch in combination with waste products that are hard to utilize—waste lignin and hydrolysate extracted from chromium tanned waste. Surprisingly the addition of such waste products into PVA gives rise to blends with better biodegradability than commercial PVA in an aquatic aerobic environment with non-adapted activated sludge. These blends also exhibited greater solubility in the water and UV stability than commercial PVA. Tests on the processing properties of the blends (melt flow index, tensile strength and elongation at break of the films) as well as their mechanical properties showed that materials based on these blends might be applied in agriculture (for example as the systems for controlled-release pesticide or fertilizer) and, somewhat, in the packaging sector.  相似文献   

7.
In the present work, bottom and fly ash, generated from incinerated medical waste, was used as a raw material for the production of geopolymers. The stabilization (S/S) process studied in this paper has been evaluated by means of the leaching and mechanical properties of the S/S solids obtained. Hospital waste ash, sodium hydroxide, sodium silicate solution and metakaolin were mixed. Geopolymers were cured at 50 °C for 24 h. After a certain aging time of 7 and 28 days, the strength of the geopolymer specimens, the leachability of heavy metals and the mineralogical phase of the produced geopolymers were studied. The effects of the additions of fly ash and calcium compounds were also investigated. The results showed that hospital waste ash can be utilized as source material for the production of geopolymers. The addition of fly ash and calcium compounds considerably improves the strength of the geopolymer specimens (2–8 MPa). Finally, the solidified matrices indicated that geopolymerization process is able to reduce the amount of the heavy metals found in the leachate of the hospital waste ash.  相似文献   

8.
The insulation material of electronic devices should offers high thermal conductivity whilst retaining suitable mechanical properties. Epoxy resin is an example of a material that is commonly used by industry for electronic insulation, despite the fact that neither the thermal conductivity nor the mechanical properties are particularly satisfying. These properties can be enhanced by incorporating filler, with silica flour representing the most popular filler. An economically appealing solution is to replace silica flour with fly ash as filler material, however it must be remembered that compatibility of fly ash and epoxy resin is not ideal. In order to improve the coupling between these two materials, fly ash particles covered with [3-(2-Aminoethylamino)propyl]trimethoxysilane were obtained with six different conditions of the silanization process, where the amount of silane, the temperature and the time of the reaction were changed. The presence of the silane layer was confirmed via Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis and Scanning Electron Microscopy. The mechanical properties, including tensile strength, Young Modulus and fracture toughness, as well as the thermal conductivity of the final samples were investigated. In the case of composites with silanized fillers, all of the mechanical properties were improved, and an enhancement of thermal conductivity was observed for several composites. Moreover, the differences in coupling between the silanized fly ash and the untreated fly ash, and the epoxy matrix were precisely recorded by means of SEM. The presented studies confirm that an effective silanization process can significantly improve the properties of composites, while also verifying the usefulness of waste material. The results highlight that fly ash may be utilized to create a more economically affordable insulation material.  相似文献   

9.
The objective of this work was to determine some physical and mechanical properties of the high density polyethylene (HDPE) composites reinforced with various mixtures of the paper sludge and the wood flour, and to evaluate the coupling agent performance. The waste sludge materials originating from two different sources including paper making waste water treatment sludge (PS) and ink-eliminated sludge (IES) were characterized in terms of physico-chemical properties. In the experiment, four levels of paper sludge (20, 30, 40 and 60 wt%), three levels of wood flour (20, 40 and 60 wt%), and two levels of coupling agent (MAPE) content (2 and 3 wt%) were used. The flexural properties of the composites were positively affected by the addition of the sludge. Especially, tensile modulus improved with the increase of paper sludge content. With the addition of MAPE, flexural properties improved considerably compared with control specimens (without any coupling agent). The results showed that the water absorption (WA) and thickness swelling (TS) values of the samples decreased considerably with increasing sludge content in the composite, while they increased with increasing wood flour content. It is to be noted that with incorporation of MAPE in the composite formulation, the compatibility between the wood flour and HDPE was enhanced through esterification, which reduced the WA and TS and improved the mechanical properties. Composites made with IES exhibited superior physico-mechanical properties compared with the PS filled composites. Overall results suggest that the waste paper sludge materials were capable of serving as feasible reinforcing fillers for thermoplastic polymer composites.  相似文献   

10.
Galvanized or “chromium-plated” plastics are well known to the consumer from the automotive sector and sanitary area. Polymers such as acrylonitrile butadiene styrene (ABS) are typically coated with a layer system of chromium, nickel and copper to obtain the characteristic optical surface and resistance properties. Due to the complex manufacturing process and high quality requirements, the production of these plastic metal composites generates 10–30% of rejects. We, therefore, developed an innovative process cascade for the recovery of both components (metal and polymer) applying established technologies (mechanical pre-treatment, classification, melt filtration, CreaSolv® Process) and were able to obtain ABS regranulate having excellent properties regarding the characteristic values for strength but slight compromises in impact characteristics. Blends with different amounts of virgin ABS, virgin PC and recycled ABS material as well as the pure cases were successfully re-metallized, all of them passing adhesion test, thermal shock resistance and CASS test. The high purity of the recovered materials led to increased redemption prices for metal and polymer by a factor of 6 and 2.5, respectively. Thus, the value added of metallized plastic waste is maximized, revealing a highly positive economic prognosis of a commercial implementation of the developed process—even at moderate scale.  相似文献   

11.
This study is conducted to look at the modification of mechanical properties of recycled polypropylene (PP) from post-consumer containers with the addition of stabilizers, elastomer (ethylene-octene rubber, EOR) and calcium carbonate (CaCO(3)). The mechanical and thermal properties of the blends were evaluated. The results showed limited changes with the addition of elastomer and calcium carbonate on the mechanical properties of the recycled polypropylene. Some differences were observed, but the trends were not reproducible over the different compositions. DSC analysis confirmed the presence of polyethylene (PE) in the recycled polypropylene. The polyethylene impurity and the presence of many different qualities of polypropylene in the recycled material may have prevented any possible improvement in the mechanical properties by the addition of EOR and CaCO(3), improvements seen in previous studies on virgin polypropylene. The compatibility of the different homopolymers and copolymers of PP used in consumer packaging is not known, while polyethylene and polypropylene are known not to be miscible with each other. The mixture of qualities and materials may explain such a poor blending. Reusing and upgrading of recycled PP from post-consumer containers would therefore first require a better sorting of the post-consumer waste. The use of an adequate compatibilizer that would allow a uniform and homogeneous blending of the raw material mixture might enhance the mechanical properties.  相似文献   

12.
Management of natural aggregate resources has become one of the most important challenges in construction, especially for high demand applications such as roads. Incinerator bottom ash (IBA), which is produced from burning domestic waste, has been considered a useful solution to the shortage of natural resources. In this research, IBA was mixed with limestone to produce an acceptable blend for use as a road foundation layer. Novel and traditional additives were adopted to improve the mechanical properties of IBA blends. The study focused on the treatment effect of additives on the mechanical characteristics of IBA blends under monotonic and cyclic triaxial stresses. The investigation evaluated fundamental material properties, including resilient modulus, initial Young's modulus and Poisson's ratio. Two nonlinear empirical models were adopted to depict the experimental resilient modulus results of the IBA blends. An approach has been proposed to predict realistic and representative values of resilient modulus for the material. In addition, a new relationship has been established between Young's modulus, resilient modulus and Poisson's ratio. Triaxial test results revealed that additives are more efficient with the control limestone blend than with the IBA blends. Novel additives, such as enzyme I and silica fume, produced a noticeable improvement in IBA properties in comparison to traditional additives.  相似文献   

13.
Modern mechanical–biological waste treatment plants for the stabilization of both the source-separated organic fraction of municipal solid wastes (OFMSW) and the mixed stream of municipal solid wastes (MSW) include a mechanical pretreatment step to separate recyclable materials such as plastics, glass or metals, before biological treatment of the resulting organic material. In this work, the role of storage and mechanical pretreatment steps in the stabilization of organic matter has been studied by means of respiration techniques. Results have shown that a progressive stabilization of organic matter occurs during the pretreatment of the source-separated OFMSW, which is approximately 30% measured by the dynamic respiration index. In the case of mixed MSW, the stabilization occurring during the reception and storage of MSW is compensated by the effect of concentration of organic matter that the pretreatment step provokes on this material. Both results are crucial for the operation of the succeeding biological process. Finally, respiration indices have been shown to be suitable for the monitoring of the pretreatment steps in mechanical–biological waste treatment plants, with a strong positive correlation between the dynamic respiration index and the cumulative respiration index across all samples tested.  相似文献   

14.
To date, sparse information is available on the mechanical properties of municipal solid waste and the results of published work are often hard to compare due to differences in waste composition and therefore properties. To allow comparison, a unified classification system for waste is deemed crucial. Existing classification systems are presented and discussed. For a geotechnical classification, mechanical properties, size, shape and degradability potential of waste components have to be taken into account. A new and improved classification system for waste components is proposed, which complies with the requirements of a geotechnical classification system. It classifies waste components based on: (1) their material engineering properties (e.g., shear, compressive and tensile strength), (2) a size distribution of the components, (3) the component shape (reinforcing, compressible and incompressible), and (4) the degree of degradability. The proposed classification system is applied to data from the literature and methods for presenting classification information are demonstrated. Further work required to develop a full classification system for waste bodies is highlighted.  相似文献   

15.
Recycling today constitutes the most environmentally friendly method of managing wood waste. A large proportion of the wood waste generated consists of used furniture and other constructed wooden items, which are composed mainly of particleboard, a material which can potentially be reused. In the current research, four different hydrothermal treatments were applied in order to recover wood particles from laboratory particleboards and use them in the production of new (recycled) ones. Quality was evaluated by determining the main properties of the original (control) and the recycled boards. Furthermore, the impact of a second recycling process on the properties of recycled particleboards was studied. With the exception of the modulus of elasticity in static bending, all of the mechanical properties of the recycled boards tested decreased in comparison with the control boards. Furthermore, the recycling process had an adverse effect on their hygroscopic properties and a beneficial effect on the formaldehyde content of the recycled boards. The results indicated that when the 1st and 2nd particleboard recycling processes were compared, it was the 2nd recycling process that caused the strongest deterioration in the quality of the recycled boards. Further research is needed in order to explain the causes of the recycled board quality falloff and also to determine the factors in the recycling process that influence the quality degradation of the recycled boards.  相似文献   

16.
Pyrolysis of polymer mixtures with a composition similar to that of municipal plastic waste containing polyvinyl chloride (PVC) and of municipal plastic waste free of PVC was performed in the presence of components of biomass, namely lignin, cellulose, or both. The pyrolysis products were characterized by standard methods utilized in the petrochemical industry, i.e., paraffins-isoparaffinsolefins-naphthenes-aromatics analysis, proton nuclear magnetic resonance and infrared spectroscopy, and gas chromatography-mass spectrometry. Up to 3 wt% lignin, cellulose, or both in mixed polymers changed the material balance of pyrolysis by decreasing the amount of waxy products. The presence of both PVC and biomass components significantly changed the material balance by decreasing the waxy product yield and increasing the gas and coke yield. The composition of all pyrolysis products was also modified with the addition of PVC, components of biomass, or both.  相似文献   

17.
In France, the interest in Mechanical Biological Treatment (MBT) prior to landfilling is actually growing. In the absence of acceptance criteria for the waste to be landfilled, an alternative to the intensive, high-technology MBT can only find its place in the French context if it shows substantial benefits from an environmental, economic or operational point of view. This paper presents an experiment of low-cost MBT of size reduced MSW without material splitting. The performance of an experimental, pilot-scale mechanical and biological treatment process has been studied on 37.5 Mg of raw municipal solid waste. The mechanical process has been kept simple with only coarse shredding and no material recovery. The biological treatment, which was a low-cost forced aeration process, was monitored for 25 weeks. The biogas production potential of the waste was reduced by 90% to 19 NL kgDM(-1). The initial AT4 index of 82.9 mg O2 gDM(-1) decreased to 16.0 mg O2 gDM(-1). After 25 weeks of aerobic treatment, the dry mass loss reached 37%, while the mass of waste going to landfill was reduced by 28%. The average performances of the process were explained by the biological process itself, which was not optimal, and also by the characteristics of the input waste. The high particle size of the treated waste and the high content of slowly biodegradable matter (such as paper and cardboard) may both be significant drawbacks for the biological stabilisation of waste.  相似文献   

18.
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material).  相似文献   

19.
An economical method to process the metal waste that comes from the ball-bearing industry is presented. The purpose of the study was to determine the physical-chemical properties of the material, to present the most suitable binders and identify the factors that can affect briquette strength. The mechanical strength and resistance to gravitational drop were defined for both fresh briquettes and those that had been seasoned. The briquette structure was also tested. On the basis of the results of experimental studies and laboratory trials two techniques for processing the waste from the ballbearing industry on an industrial technological scale were developed. The economic and ecological impacts of these industrial applications were examined. The results of the investigations suggest that the briquettes might be recycled in steel-making furnaces. The reported solution to the problem of management of this type of waste appears to be universal and could also be applied by other waste-related enterprises.  相似文献   

20.
The industrial production of wet phosphoric acid in Morocco led to controversial stockpiling of waste phosphogypsum by-products resulting in the release of significant amounts of toxic impurities in salt marshes. In the framework of fighting against global climate change and efforts to reduce toxic industrial wastes (phosphate industry), this work presents a new polymer composite based on phosphogypsum (PhG) and polypropylene (PP).The compounds were produced by twin-screw extrusion and injection molding. The morphological results show that good affinity between PhG and PP led to good particle dispersion/distribution in the polymer matrix. Thermal characterizations showed that PhG particles improved the thermal stability of PP with a 50 °C increase at 40 wt%. The optimum tensile modulus was also obtained at 40 wt% with a 74 % increase over neat PP. Dynamical mechanical analysis showed that PhG addition can improve the viscoelastic properties of PP for potential applications under dynamic stress. Overall, it can be concluded that PhG is potential reinforcing filler for the production of PP composites and represents a promising avenue for the valorization of this waste as a new raw material while resolving some environmental issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号