首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
真菌和细菌对染料的吸附脱色及再生能力的研究   总被引:9,自引:0,他引:9  
进行了真菌和细菌共培养对染料的吸附脱色和吸附脱色能力再生的研究。结果表明,青霉菌G-1首先对偶氮染料S-119、蒽醌染料艳紫KN-B(C.I.Reactive violet 22)水溶液中染料进行快速吸附去除,菌丝对同种染料的吸附速度随菌丝培养液中葡萄糖浓度的增加而加快,吸附染料的G-1菌丝在与细菌的共培养中完成对染料的脱色降解,脱色速度受培养液中葡萄和氮源浓度影响较大,从吸附速率和完全脱色时间综合评价,以葡萄糖浓度为5g/L、酒石酸铵为20mmol/L的培养基中培养的菌丝对染料的吸附脱色效果最好,吸附在菌丝上的艳紫KN-B脱色后菌丝吸附脱色能力得到再生,菌丝对100mg/L的艳紫KN-B染料水溶液可重复处理4次。青霉菌G-1对酸性染料废水处理3h,色度去除率为75.9%,吸附染料的菌丝在与细菌共培养中完成对染料的脱色,对试验所用染料废水,菌丝的处理能力获得1次再生。  相似文献   

2.
X791.03 200501733 青霉菌对印染废水吸附脱色及深度处理的研究/ 李蒙英…(苏州大学生命科学学院)//环境污染治理技术与设备/中科院生态环境研究中心.- 2004,5(9).-36-39 环图X-4 利用青霉菌P-1(Penicillium sp.)对2种染浴废水中的染料进行吸附去除,研究结果表明,吸附处理3h,黑色和红色染浴废水色度基本被去除,去除率分别达98.0%和74.5%,但去色处理后废水的CODCr值仍偏高。对去除色度的废水进一步用活性污泥进行深度处理,黑色和红色废水的CODCr去除率分别为75.9%和89.7%。青霉菌菌丝通过吸附作用从废水中抽提出的染料分子在有染料降解细菌L-1和L-2的降解池中脱色降解,菌丝吸附脱色能力得到再生。图5表3参12  相似文献   

3.
直接大红4BE染料吸附脱色真菌的分离及特性研究   总被引:1,自引:0,他引:1  
通过梯度富集培养,筛选到一株偶氮染料直接大红4BE吸附脱色真菌HS-DY08,该菌在基础培养基中,30℃、150r/min条件下,24h内对浓度为30mg/L的直接大红4BE的吸附脱色率达92%。脱色液动态扫描结果显示,随着HS-DY08菌株对染料的吸附脱色降解,直接大红4BE的吸收峰(526nm)明显降低,中间产物(325nm)的吸收峰逐渐升高,且染料吸附过程中菌体生长量增加,表明菌株对染料的吸附脱色过程中伴随着对染料的生物降解和利用。不同的共基质底物对直接大红4BE吸附脱色能力的促进作用依次为:PDB>葡萄糖>蛋白胨>NH4Cl。结合形态特征及显微观察结果,初步鉴定HS-DY08为青霉属(Pemnicillium sp.)。  相似文献   

4.
应用青霉菌BX1活体吸附水中活性艳蓝KN-R   总被引:17,自引:1,他引:17  
研究了染料高效吸附菌(青霉菌BX1)的生长条件及其对活性艳蓝KN-R的吸附特性为避免染料对其生长的毒害,本研究将菌体培养及其对染料的吸附分离.结果表明,青霉菌BX1生长分3个阶段:孢子活化、线性生长和菌体自解.菌体生长的最佳温度为30℃,最优碳源依次为淀粉>木糖>蔗糖>麦芽糖>葡萄糖>乳糖,最佳pH值为4.0用培养48h的活菌体吸附水中的100mg/L的活性艳蓝KN-R,120min脱色率达93.7%,20℃时菌体(以干菌重计)对染料的最大饱和吸附量为159mg/g.  相似文献   

5.
活性艳蓝KN-R的生物吸附脱色研究   总被引:20,自引:0,他引:20       下载免费PDF全文
从广州某印染厂生化处理池的污泥中筛选到一株对蒽醌染料具有高效吸附脱色作用的菌株HX.考察了碳源浓度、氮源浓度、盐度、染料浓度对蒽醌染料KN-R吸附脱色的影响.结果表明,对于接入的生长菌体,碳源浓度高于7.5g/L时,染料才能完全脱色;染料对菌株HX的生长有一定抑制性,但菌株HX仍表现出了优异的吸附性能,对于250mg/L的KN-R可在48h内完全脱色,400mg/L组在72h内脱色率达94%,600mg/L组72h脱色率可达78.4%;有机氮对染料的脱色起到一定的促进作用,对吸附菌的生长和染料的脱色不是决定性因素;盐度可促进染料的吸附脱色,其同离子效应和盐度效应决定了盐度组的完全脱色时间要比不加入盐度组长;吸附菌HX的生长和染料脱色同步进行,菌体干重达最大时染料的脱色率亦达最大.  相似文献   

6.
菌株HX5对多种染料的吸附作用   总被引:5,自引:4,他引:5  
研究了HX5生长菌体对分属活性、酸性、碱性、直接和分散5大类的26种染料的吸附性能.结果表明,HX5生长菌体可在5h内完全吸附直接染料和分散染料,碱性染料在生长菌体上完全吸附脱色的时间为12h,其次是活性染料,最不易吸附的为酸性染料.染料在生长菌体上的吸附由染料分子的结构和性质所决定,直接染料分子呈线性平面结构、疏水性较强,易于吸附,完全吸附脱色的时间为5h;分散性染料水溶性较差,在静电力的诱导之下即可在较短时间内完全吸附脱色;碱性染料分子带正电,与带负电荷的菌丝球表面异性电荷相吸从而发生吸附脱色;活性染料分子中的氨基质子化后与菌丝球表面相互吸引,氨基质子化的程度越高,吸附效果也就越好;酸性染料分子中氨基质子化程度受到结构本身的限制,以及不存在带正电荷的基团,因而吸附效果最差.  相似文献   

7.
以黄曲霉菌株A5p1为生物材料,研究其脱色染料的广谱性,并选择偶氮染料直接蓝71(DB71)为模型底物,探讨脱色特性及降解产物.该菌株对15种染料的脱色测试结果表明,染料浓度为100mg/L时脱色效率为61.7%~100%.该菌对偶氮染料DB71具有生物吸附和生物降解的双重作用,在pH值7.0,温度30℃,染料浓度300mg/L,蔗糖为碳源时对DB71 脱色率为100%.酶分析显示葡萄糖氧化酶和锰过氧化物酶参与染料的降解.FTIR、GC-MS和LC-MS分析确定代谢终产物为萘胺、叠氮萘、2-羟基-6-草酰-苯甲酸和1-萘酚.  相似文献   

8.
染料卡布龙红和弱酸大红,质量浓度(洲m沙一’)分别为25、50、1印和12.5、25、50,48h后培养液基本脱色,较高浓度下菌膜上有残余染料吸附,5d后染料质量降解率分别是100%、88%、92%和58%、65%、38%。以含有上述两种染料的印染废水置换培养液,并加人葡萄糖1岁L,黄抱原毛平革菌可以直接使废水脱色。菌丝可以重复培养脱色废水至少5批,每批废水的脱色率均大于卯%。5批废水总的染料质量降解率约为80%。在重复培养脱色废水的过程中,测不到木素过氧化物酶的活力,说明废水中的染料分子是在细胞表面或进人胞内被降解的。若加人的葡萄糖浓度降低一半以上…  相似文献   

9.
文章以杂环类水溶性染料虎红(四碘四氯荧光素,C_(20)H_4Cl_4I_4O_5)作为研究对象,利用筛选培养基从印染厂的废水中分离出具有去除虎红的优势霉菌,采用摇瓶培养的方法,研究所筛选菌株的脱色性能与脱色机理,以获取脱色效果最优的菌株。应用均匀设计法对最优菌株的脱色条件进行优化,以提高其脱色效果。结果表明,从染料废水中分离纯化出青霉属、根霉属、曲霉属3种脱色霉菌,对虎红染液均具有较好的脱色效果,脱色机理主要是吸附与降解共同作用,其中根霉与曲霉的脱色性能较优。通过均匀设计法对2株霉菌进行复合脱色优化,获得最适脱色条件:pH 7.95、温度25.47℃、转速156.29 r/min、脱色时间112.99 h、根霉菌液接种量2.74 mL/(100 mL)、曲霉菌液接种量0.50 mL/(100 mL)、染料浓度0.13 g/(100 mL),最高脱色率为146.44%。  相似文献   

10.
考察了4株丝状真菌对3种高水溶性染料的吸附脱色,研究了开放体系中影响菌丝成球生长及染料吸附的几个关键因素并探讨了菌丝球多次重复接种的可行性.结果显示,4菌株对酸性艳红B的去除率接近100%;木霉对3种染料的脱色率均超过99%.开放系统中低时间研磨菌丝的高浓度接种木霉成球良好,酸性艳红B去除近100%.菌丝球的重复接种加速了染料的吸附去除,废水脱色时间从一次接种的72h减至3次接种的12h.  相似文献   

11.
青霉菌GX2对蒽醌染料的吸附作用   总被引:27,自引:1,他引:27  
GX2生长菌体对 4种蒽醌染料均表现出优良的吸附性能 ,但由于染料分子的结构不同 ,吸附速率和吸附率也表现出一定的差异 .染料对菌体的生长具有一定的抑制作用 ,但即使在很高的染料浓度下 ,GX2生长菌体仍表现出很强的吸附性能 .对 250mg/L活性艳蓝KN-R的吸附率高达 100% ,对 400mg/LKN R的吸附率也可达91.4% .在 0~2%范围内 ,随着盐度 (NaCl)的增加 ,菌体干重增加 ;颗粒状菌团的直径却随之减小 ,比表面积增大 ,对GX2生长菌体的染料吸附表现出较为明显的促进作用 .碳源浓度通过影响菌体的生长而影响染料吸附 ,当培养基中的葡萄糖浓度大于 2.5g/L时 ,即可使浓度为 120mg/L的活性艳蓝KN R溶液完全脱色 .生长菌体具有比静止活体和死体更好的吸附性能 .  相似文献   

12.
裂褶菌F17对偶氮染料刚果红的脱色降解及其产物分析   总被引:4,自引:0,他引:4  
利用本实验室新构建的染料脱色降解体系,对裂褶菌F17(Schizophyllum sp.F17)脱色降解刚果红进行了研究,分析了该菌的主要降解酶,并对刚果红降解产物进行分离和鉴定.结果表明,裂褶菌F17在此体系中对刚果红表现出较高的脱色降解能力,菌球加入48h后脱色率达到91.5%;酶活检测表明,该菌主要产生锰过氧化物酶(MnP),并在脱色48h时,MnP酶活达到最大值96.1U·L-1.此外,对脱色96h和192h后的脱色液进行紫外-可见扫描,发现刚果红在可见光区495nm处的吸收峰已消失,并在紫外区出现多个吸收峰.通过高效液相色谱分离得到1种刚果红降解产物,用质谱和傅立叶红外光谱鉴定,发现该产物相对分子量为184.2,主要官能团为-C6H4-和芳基-NH2,结合刚果红结构和该产物的核磁共振波谱推断其为联苯胺;并且随着降解时间的延长,联苯胺逐渐被降解.  相似文献   

13.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

14.
利用本实验室新构建的白腐菌Trametes sp.SQ01和毛壳菌Chaetomium sp.R01混合培养体系,对刚果红、酸性红、橙黄G和溴酚蓝4种染料进行了脱色研究.结果表明,SQ01与R01混合培养所产生的锰过氧化物酶(MnP)酶活比菌株SQ01单独培养时提高了约5.5倍.菌株R01的接种量、接种时间对混合培养中...  相似文献   

15.
Four materials, sodium carboxymethylcellulose (Na-CMC), sodium alginate (SA), polyvinyl alcohol (PVA), and chitosan (CTS), were prepared as supports for entrapping fungus Aspergillus fumigatus. The adsorption of synthetic dyes. Reactive Brilliant Blue KN-R, and Reactive Brilliant Red K-2BP, by these immobilized gel beads and plain gel beads was evaluated. The adsorption efficiencies of Reactive Brilliant Red K-2BP and Reactive Brilliant Blue KN-R by CTS immobilized beads were 89.1% and 93.5% in 12 h, respectively. The adsorption efficiency by Na-CMC immobilized beads was slightly lower than that of mycelial pellets. But the dye culture mediums were almost completely decolorized in 48 h using the above-mentioned two immobilized beads (exceeding 95%). The adsorption efficiency by SA immobilized beads exceeded 92% in 48 h. PVA-SA immobilized beads showed the lowest adsorption efficiency, which was 79.8% for Reactive Brilliant Red K-2BP and 92.5% for Reactive Brilliant Blue KN-R in 48 h. Comparing the adsorption efficiency by plain gel beads, Na-CMC plain gel beads ranked next to CTS ones. SA and PVA-SA plain gel beads hardly had the ability of adsorbing dyes. Subsequently, the growth of mycelia in Na-CMC and SA immobilized beads were evaluated. The biomass increased continuously in 72 h. The adsorption capacity of Reactive Brilliant Red K-2BP and Reactive Brilliant Blue KN-R by Na-CMC immobilized beads was 78.0 and 86.7 mg/g, respectively. The SEM micrographs show that the surface structure of Na-CMC immobilized bead is loose and finely porous, which facilitates diffusion of the dyes.  相似文献   

16.
PhotocatalyticdecolorizationofdispersoldyesYouDaoxin;DaiShugui(DepartmentofEnvironmentalScienee,NankaiUniversity,Tianjin30007...  相似文献   

17.
Calcium-alginate pectin entrapped bitter gourd peroxidase (BGP) has been employed for the treatment of disperse dyes: Disperse Brown 1 (DB 1) and Disperse Red 17 (DR 17). Peroxidase alone was unable to decolorize DR 17 and DB 1. However, the investigated dyes were decolorized maximally by BGP in the presence of 0.2 mmol/L redox mediator, violuric acid (VA). A slow decrease in percent decolorization was observed when VA concentration was higher than 0.2 mmol/L which could likely be due to the high reactivity of its aminoxyl radical (> N–O.) intermediate, that might undergo chemical reactions with aromatic amino acid side chains of the enzyme thereby inactivating it. Maximum decolorization of the dyes was observed at pH 3.0 and 40°C within 2 hr of incubation. Immobilized peroxidase decolorized 98% DR 17 and 71% DB 1 using 35 U of BGP in batch process in 90 min. Immobilized enzyme decolorized 85% DR 17 and 51% DB 1 whereas soluble enzyme decolorized DR 17 to 48% and DB 1 to 30% at 60°C. UV-visible spectral analysis was used to evaluate the degradation of these dyes and their toxicity was tested by Allium cepa test. The generally observed higher stability of the bioaffinity bound enzymes against various forms of inactivation may be related to the specific and strong binding of enzyme with bioaffinity support which prevents the unfolding/denaturation of enzyme. Thus entrapped peroxidase was found to be effective in the decolorization of the investigated dyes.  相似文献   

18.
Azo dyes are among the oldest man-made chemicals and they are still widely used in the textile, printing and the food industries.About 10% - 15% of the total dyes used in the industry is released into the environment during the manufacturing and usage. Some dyes and some of their N-substituted aromatic bio-transformation products are toxic and/or carcinogenic and therefore these dyes are considered to beenvironmental pollutants and health hazards. These azo dyes are degraded by physico-chemical and biological methods. Of these, biological methods are considered to be the most economical and efficient. In this work, attempts were made to degrade these dyes aerobically. Theorganisms which were efficient in degrading the following azo dyes-Red RB, Remazol Red, Remazol Blue, Remazol Violet, Remazol Yellow,Golden Yellow, Remazol Orange, Remazol Black- were isolated from three different sources viz., wastewater treatment plant, paper milleffluent treatment plant and tannery was tewater treatment plant. The efficiency of azo dye degradation by mixed cultures from each source wasanalyzed. It was found that mixed cultures from tannery treatment plant worked efficiently in decolorizing Remazol Red, Remazol Orange,Remazol Blue and Remazol Violet, while mixed cultures from the paper mill effluent worked efficiently in decolorizing Red RB, Golden Yellow and Remazol Yellow. The mixed cultures from wastewater treatment plant efficiently decolorized Remazol Black.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号