共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid reductive dechlorination of atrazine by zero-valent iron under acidic conditions 总被引:10,自引:0,他引:10
Dombek T Dolan E Schultz J Klarup D 《Environmental pollution (Barking, Essex : 1987)》2001,111(1):21-27
The dechlorination of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) via reaction with metallic iron under low-oxygen conditions was studied using reaction mixture pH values of 2.0, 3.0, and 3.8. The pH control was achieved through addition of sulfuric acid throughout the duration of the reaction. The lower the pH of the reaction mixture, the faster the degradation of atrazine. The surface area of the sulfuric acid-treated iron particles was 0.31 (+/- 0.01) m2 g-1 and the surface area normalized initial pseudo-first order rate constants (kSA, where rate = kSA x (surface area/l) x [Atrazine]) at pH values of 2.0, 3.0, and 3.8 were equal to, respectively, 3.0 (+/- 0.4) x 10(-3) min-1 m-2 l, 5 (+/- 3) x 10(-4) min-1 m-2 l, and 1 (+/- 1) x 10(-4) min-1 m-2 l. The observed products of the degradation reaction were dechlorinated atrazine (2-ethylamino-4-isopropylamino-1,3,5-triazine) and possibly hydroxyatrazine (2-ethylamino-4-isopropylamino-6-hydroxy-s-triazine). Triazine ring protonation may account, at least in part, for the observed effect of pH on atrazine dechlorination via metallic iron. 相似文献
2.
Kinetics of reductive denitrification by nanoscale zero-valent iron 总被引:32,自引:0,他引:32
Zero-valent iron powder (Fe0) has been determined to be potentially useful for the removal of nitrate in the water environment. This research is aimed at subjecting the kinetics of denitrification by nanoscale Fe0 to an analysis of factors affecting the chemical denitrification of nitrate. Nanoscale iron particles with a diameter in the range of 1-100 nm, which are characterized by the large BET specific surface area to mass ratio (31.4 m2/g), removed mostly 50, 100, 200, and 400 mg/l of nitrate within a period of 30 min with little intermediates. Compared with microscale (75-150 microm) Fe0, end product is not ammonia but N2 gas. Kinetics analysis from batch studies revealed that the denitrification reaction with nanoscale Fe0 appeared to be a pseudo first-order with respect to substrate and the observed reaction rate constant (k(obs)) varied with iron content at a relatively low degree of application. The effects of mixing intensity (rpm) on the denitrification rate suggest that the denitrification appears to be coupled with oxidative dissolution of iron through a largely mass transport-limited surface reaction (<40 rpm). 相似文献
3.
4.
Yu-Yang Long Chi Zhang Yao Du Xiao-Qing Tao Dong-Sheng Shen 《Environmental science and pollution research international》2014,21(6):4783-4792
Anaerobic dechlorination is an effective degradation pathway for higher chlorinated polychlorinated biphenyls (PCBs). The enhanced reductive dechlorination of PCB-contaminated soil by anaerobic composting with zero-valent iron (ZVI) was studied, and preliminary reasons for the enhanced reductive dechlorination with ZVI were investigated. The results show that the addition of nanoscale ZVI can enhance dechlorination during in-vessel anaerobic composting. After 140 days, the average number of removed Cl per biphenyl with 10 mg g?1 of added nanoscale ZVI was 0.63, enhancing the dechlorination by 34 % and improving the initial dechlorination speed. The ZVI enhances dechlorination by providing a suitable acid base environment, reducing volatile fatty acid inhibition and stimulating the microorganisms. The C/N ratios for treatments with the highest rate of ZVI addition were smaller than for the control, indicating that ZVI addition can promote compost maturity. 相似文献
5.
Isotopic fractionation during reductive dechlorination of trichloroethene by zero-valent iron: influence of surface treatment 总被引:4,自引:0,他引:4
During reductive dechlorination of trichloroethene (TCE) by zero-valent iron, stable carbon isotopic values of residual TCE fractionate significantly and can be described by a Rayleigh model. This study investigated the effect of observed reaction rate, surface oxidation and iron type on isotopic fractionation of TCE during reductive dechlorination. Variation of observed reaction rate did not produce significant differences in isotopic fractionation in degradation experiments. However, a small influence on isotopic fractionation was observed for experiments using acid-cleaned electrolytic iron versus experiments using autoclaved electrolytic iron, acid-cleaned Peerless cast iron or autoclaved Peerless cast iron. A consistent isotopic enrichment factor of epsilon = -16.7/1000 was determined for all experiments using cast iron, and for the experiments with autoclaved electrolytic iron. Column experiments using 100% cast iron and a 28% cast iron/72% aquifer matrix mixture also resulted in an enrichment factor of -16.9/1000. The consistency in enrichment factors between batch and column systems suggests that isotopic trends observed in batch systems may be extrapolated to flowing systems such as field sites. The fact that significant isotopic fractionation was observed in all experiments implies that isotopic analysis can provide a direct qualitative indication of whether or not reductive dechlorination of TCE by Fe0 is occurring. This evidence may be useful in answering questions which arise at field sites, such as determining whether TCE observed down-gradient of an iron wall remediation scheme is the result of incomplete degradation within the wall, or of the dissolved TCE plume by passing the wall. 相似文献
6.
Debera A. Backhus Flynn W. Picardal Scott Johnson Tracy Knowles Richard Collins Anna Radue Sanggoo Kim 《Journal of contaminant hydrology》1997,28(4):337-361
Sorption of organic contaminants to soils has been shown to limit bioavailability and biodegradation in some systems. Use of surfactants has been proposed to reverse this effect. In this study, the effects of a high organic carbon content soil and a nonionic surfactant (Triton X-100) on the reductive dechlorination of carbon tetrachloride (CCl4) were examined in anaerobic systems containing Shewanella putrefaciens. Although more than 70% of the added CCl4 was sorbed to the soil phase in these systems, the reductive dechlorination of CCl4 was not diminished. Rather, rates of CCl4 dechlorination in systems containing soil were enhanced relative to systems containing non-sorptive sand slurries. This enhancement was also observed in sterile soil slurries to which a chemical reductant, dithiothreitol was added. It appears that the organic soil used in these experiments contains some catalytic factor capable of transforming CCl4 in the presence of an appropriate chemical or microbial reductant. The addition of Triton X-100 to sand and soil slurries containing S. putrefaciens resulted in increased CCl4 degradation in both systems. The effect of Triton could not be explained by: (i) surfactant induced changes in the distribution of CCl4, (i.e. decreased sorption) or the rate of CCl4 desorption; (ii) a direct reaction between Triton and CCl4; or (iii) increased cell numbers resulting from use of the surfactant as a substrate. Rather, it appears that Triton X-100 addition resulted in lysis of bacterial cells, a release of biochemical reductant, and enhanced reductive transformation of CCl4. These results provide insights to guide the development of more effective direct or indirect bioremediation strategies. 相似文献
7.
Reductive dechlorination of chlorinated organic contaminants is an effective approach to treat this widespread group of environmentally hazardous substances. Metalloporphyrins can be used to catalyze reduction reactions by shuttling electrons from a reducing agent (electron donor) to chlorinated organic contaminants, thus rendering them to non-chlorinated acetylene, ethylene or ethane as major products. Iron, nickel and vanadium oxide tetraphenyl porphyrins (TPPs) were used as models of non-soluble metalloporphyrins that are common in subsurface environments, and hence may inflect on the ability to use natural ones. The effect of cosolvents on metalloporphyrins is demonstrated to switch the reduction of tetrachlorethylene (PCE) from no reaction to complete PCE transformation within 24 h and the production of final non-chlorinated compounds. Variations in product distributions for the different metalloporphyrins indicate that changes in the core metal can influence reaction rates and effective pathways. Furthermore, different cosolvents can generate varied product distributions, again suggesting that different pathways and/or rates are operative in the reduction reactions. Comparison of different cosolvent effects on PCE reduction using vitamin B12--a soluble natural metalloporphyrinogen--as the catalyst shows less pronounced differences between reactions in various cosolvent solutions versus only aqueous solution. 相似文献
8.
Abiotic reductive dechlorination of chlorinated ethylenes by soil in anaerobic environments was characterized to improve knowledge of the behavior of chlorinated ethylenes in natural systems, including systems modified to promote attenuation of contaminants. Target organics in the soil suspension reached sorption equilibrium in 2 days and the sorption isotherm of target organics was properly described by the linear sorption model. A modified Langmuir-Hinshelwood model was developed to describe the kinetics of reductive dechlorination of target organics by soil. The rate constants for the reductive dechlorination of chlorinated ethylenes at the reactive surfaces of reduced soils were found in the range between 0.055 (+/- 8.9%) and 2.60 (+/- 3.2%) day(-1). The main transformation products in reduced soil suspensions were C2 hydrocarbons. No chlorinated intermediates were observed at concentrations above detection limits. Five cycles of reduction of the soil followed by oxidation of the soil with trichloroethylene (TCE) did not affect the removal of TCE. The removal was affected by the reductants used and increased in the order: Fe(II) < dithionite < Fe(II) + dithionite. 相似文献
9.
In situ methods are needed to evaluate the effectiveness of chemical amendments at enhancing reductive dechlorination rates in groundwater that is contaminated with the priority pollutant, trichloroethene (TCE). In this communication, a method that utilizes single-well, “push–pull” tests to quantify the effects of chemical amendments on in situ reductive dechlorination rates is presented and demonstrated. Five push–pull tests were conducted in each of five monitoring wells located in a TCE-contaminated aquifer at the site of a former chemical manufacturing facility. Rates for the reductive dechlorination of the fluorinated TCE-surrogate, trichlorofluoroethene (TCFE), were measured before (test 1) and after (test 5) three successive additions (tests 2–4) of fumarate. Fumarate was selected to stimulate the growth and activity of indigenous microorganisms with the metabolic capability to reduce TCFE and TCE. In three wells, first-order rate constants for the reductive dechlorination of TCFE increased by 8.2–92 times following fumarate additions. In two wells, reductive dechlorination of TCFE was observed after fumarate additions but not before. The transformation behavior of fumarate was also monitored following each fumarate addition. Correlations between the reductive dechlorination of TCFE and the reduction of fumarate to succinate were observed, indicating that these reactions were supported by similar biogeochemical conditions at this site. 相似文献
10.
《Chemosphere》2013,92(11):1498-1505
Triclosan that is widely used as antimicrobial agent has been detected as contaminant in various aquatic environments. In this work, removal and biodegradation of triclosan in water by using a ubiquitous green alga, Chlorella pyrenoidosa was investigated. When C. pyrenoidosa was exposed to a series concentration of triclosan from 100 to 800 ng mL−1, more than 50% of triclosan was eliminated by algal uptake from the culture medium during the first 1 h exposure and reached equilibrium after the 6 h treatment. In the biodegradation experiments, a removal percentage of 77.2% was obtained after C. pyrenoidosa was cultivated with 800 ng mL−1 triclosan for 96 h. A major metabolite from the reductive dechlorination of triclosan was identified by using liquid chromatography coupled with electrospray ionization-mass spectrometry. The ultrastructural morphology of algal cells grown in the presence of triclosan was observed by using transmission electron microscopy and the growth of algal cells was detected. It was found that the trilcosan treatment resulted in the disruption of the chloroplast and the release of organic material into aquatic environment, which indicated that triclosan may affect membrane metabolism. 相似文献
11.
12.
The effect of edible oil emulsion treatment on enhanced reductive dechlorination was evaluated in a 14 month laboratory column study. Experimental treatments included: (1) emulsified soybean oil and dilute HCl to inhibit biological activity; (2) emulsified oil only; (3) emulsified oil and anaerobic digester sludge; and (4) continuously feeding soluble substrate. A single application of emulsified oil was effective in generating strongly reducing, anaerobic conditions for over 14 months. PCE was rapidly reduced to cis-DCE in all three live columns. Bioaugmentation with a halorespiring enrichment culture resulted in complete dechlorination of PCE to ethene in the soluble substrate column (yeast extract and lactate). However, an additional treatment with a pulse of yeast extract and bioaugmentation culture was required to stimulate complete dechlorination in the emulsion treated columns. Once the dechlorinating population was established, the emulsion only column degraded PCE from 90-120 microM to below detection with concurrent ethene production in a 33 day contact time. The lower biodegradation rates in the emulsion treated columns compared to the soluble substrate column suggest that emulsified oil barriers may require a somewhat longer contact time for effective treatment. In the HCl inhibited column, partitioning of PCE to the retained oil substantially delayed PCE breakthrough. However, reduction of PCE to more soluble degradation products (cis-DCE, VC and ethene) greatly reduced the impact of oil-water partitioning in live columns. There was only a small decline in the hydraulic conductivity (K) of column #1 (low pH+emulsion, K(final)/K(initial)=0.57) and column #2 (live+emulsion, K(final)/K(initial)=0.73) indicating emulsion injection did not result in appreciable clogging of the clayey sand. However, K loss was greater in column #3 (sludge+emulsion, K(final)/K(initial)=0.12) and column #4 (soluble substrate, K(final)/K(initial)=0.03) indicating clogging due to biomass and/or gas production can be significant. 相似文献
13.
Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinylchloride (VC)) by iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite) was characterized to obtain better understanding of the behavior of these contaminants in systems undergoing remediation by natural attenuation and redox manipulation. Batch experiments were conducted to evaluate dechlorination kinetics and some experiments were conducted with addition of Fe(II) to simulate impact of microbial iron reduction. A modified Langmuir-Hinshelwood kinetic model adequately described reductive dechlorination kinetics of target organics by the iron-bearing phyllosilicates. The rate constants stayed between 0.08 (+/-10.4%) and 0.401 (+/-8.1%) day(-1) and the specific initial reductive capacity of iron-bearing phyllosilicates for chlorinated ethylenes stayed between 0.177 (+/-6.1%) and 1.06 (+/-7.1%) microM g(-1). The rate constants for the reductive dechlorination of TCE at reactive biotite surface increased as pH (5.5-8.5) and concentration of sorbed Fe(II) (0-0.15 mM g(-1)) increased. The appropriateness of the model is supported by the fact that the rate constants were independent of solid concentration (0.0085-0.17 g g(-1)) and initial TCE concentration (0.15-0.60 mM). Biotite had the greatest rate constant among the phyllosilicates both with and without Fe(II) addition. The rate constants were increased by a factor of 1.4-2.5 by Fe(II) addition. Between 1.8% and 36% of chlorinated ethylenes removed were partitioned to the phyllosilicates. Chloride was produced as a product of degradation and no chlorinated intermediates were observed throughout the experiment. 相似文献
14.
The effect of several anions and cations normally co-present in soil and groundwater contamination sites on the degradation kinetics and removal efficiency of hexachlorobenzene (HCB) by nanoscale zero-valent iron (NZVI) particles was examined. The degradation kinetics was not influenced by the HCO(3)(-), Mg(2+), and Na(+) ions. It was enhanced in the presence of the Cl(-) and SO(4)(2-) ions due to their corrosion promotion. The NO(3)(-) competes with HCB so it inhibits the degradation reaction. The Fe(2+) ions would inhibit the degradation reaction due to passivation layer formed, while it was enhanced in the presence of Cu(2+) ions resulted from the reduced form of copper on NZVI surfaces. These observations lead to a better understanding of HCB dechlorination with NZVI particles and can facilitate the remediation design and prediction of treatment efficiency of HCB at remediation sites. 相似文献
15.
Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron 总被引:9,自引:0,他引:9
Lookman R Bastiaens L Borremans B Maesen M Gemoets J Diels L 《Journal of contaminant hydrology》2004,74(1-4):133-144
Chlorinated aliphatic hydrocarbons are common groundwater contaminants. One possible remediation option is in-situ reductive dechlorination by zero-valent iron, either by direct injection or as reactive barriers. Chlorinated ethenes (tetrachloroethene: PCE; trichloroethene: TCE) have received extensive attention in this context. However, another common groundwater pollutant, 1,1,1-trichlorethane (TCA), has attracted much less attention. We studied TCA reduction by three types of granular zero-valent irons in a series of batch experiments using polluted groundwater, with and without added aquifer material. Two types of iron were able to reduce TCA completely with no daughter product concentration increases (1,1-dichloroethane: DCA; chloroethane: CA). One type of iron showed slower reduction, with intermediate rise of DCA and CA concentrations. When evaluating the formation of daughter products, the tests on the groundwater alone showed different results than the groundwater plus aquifer batches: DCA did not temporarily accumulate in the batches with added aquifer material, contrary to the batches without added aquifer material. 1,1-dichloroethene (DCE, also present in the groundwater as an abiotic degradation product of TCA) was also reduced slower in the batches without added aquifer material than in the batches with aquifer material. Redox potentials gradually decreased to low values in batches with aquifer material without iron, while the batches with groundwater alone maintained a constant higher redox potential. Either adsorption processes or microbiological activity in the samples could explain these phenomena. Polymerase Chain Reaction (PCR: a targeted gene probe technique) for chlorinated aliphatic compound (CAH)-degrading bacteria confirmed the presence of Dehalococcoides sp. (chloroethene-degraders) but was negative for Desulfobacterium autotrophicum (a known co-metabolic TCA degrader). DCA reduction was rate determining: first-order half-lives of 300-350 h were observed. TCA was fully removed within hours. CA is resistant to reduction by zero-valent iron but it is known to hydrolyze easily. Since CA did not accumulate in our batches, it may have disappeared by the latter mechanism or it may not have formed as a major daughter product. 相似文献
16.
Stimulation of reductive dechlorination of hexachlorobenzene in soil by inducing the native microbial activity 总被引:16,自引:0,他引:16
The reductive dechlorination and behaviour of 14C-hexachlorobenzene (HCB) was investigated in an arable soil. The activity of the native anaerobic microbial communities could be induced by saturating the soil with water. Under these conditions high rates of dechlorination were observed. After 20 weeks of incubation only 1% of the applied 14C-HCB could be detected in the fraction of extractable residues. Additional organic substances, like wheat straw and lucerne straw, however considerably delayed and reduced the dechlorination process in the soil. The decline of HCB was not only caused by dechlorination but also by the formation of non-extractable residues, whereby their amounts varied with time depending on the experimental conditions. Several dechlorination products were detected, indicating the following main HCB transformation pathway: HCB → PCB → 1,2,3,5-TeCB → 1,3,5-TCB → 1,3-DCB, with 1,3,5-TCB as main intermediate dechlorination product. The other TeCB-, TCB- and DCB-isomers were also detected in low amounts, showing the presence of more than one dechlorination pathway. Since the methane production rates were lowest when the dechlorination rates were highest, it can be assumed that methanogenic bacteria were not involved in the dechlorination process of HCB. The established 14C-mass balances show, that with increasing dechlorination and incubation times, the 14C-recoveries decreased. 相似文献
17.
Microbial reduction of nitrate in the presence of nanoscale zero-valent iron (NZVI) was evaluated to assess the feasibility of employing NZVI in the biological nitrate treatment. Nitrate was completely reduced within 3 d in a nanoscale Fe(0)-cell reactor, while only 50% of the nitrate was abiotically reduced over 7 d at 25 °C. The removal rate of nitrate in the integrated NZVI-cell system was unaffected by the presence of high amounts of sulfate. Efficient removal of nitrate by Fe(II)-supported anaerobic culture in 14 d indicated that Fe(II), which is produced during anaerobic iron corrosion in the Fe(0)-cell system, might act as an electron donor for nitrate. Unlike abiotic reduction, microbial reduction of nitrate was not significantly affected by low temperature conditions. This study demonstrated the potential applicability of employing NZVI iron as a source of electrons for biological nitrate reduction. Use of NZVI for microbial nitrate reduction can obviate the disadvantages associated with traditional biological denitrification, that relies on the use of organic substrates or explosive hydrogen gas, and maintain the advantages offered by nano-particle technology such as higher surface reactivity and functionality in suspensions. 相似文献
18.
纳米铁去除水中硝酸盐的动力学研究 总被引:4,自引:0,他引:4
实验中采用了液相还原法制备新型吸附剂纳米铁。在纳米铁低投放量的条件下,采用间歇实验,分别从初始硝酸盐浓度、溶液pH值和温度的不同外界条件下研究了纳米铁对硝酸盐的去除情况。实验结果表明,硝酸盐初始浓度对反应速率有影响,但对去除率影响不大;溶液pH值为2.0时纳米铁对硝酸盐的去除效果最好;随着温度的升高,纳米铁对硝酸盐的去除率有所增加。以t时刻已反应掉的硝酸盐浓度为切入点,提出拟二级动力学方程。进而确定不同温度下的反应速率常数k。实验中k在50℃时最大,为0.014 mg/(L·min)。反应活化能Ea为17.18 kJ/mol,该反应以质量传递为控制因素。溶液中性条件下硝酸盐氮的还原产物为氨氮。 相似文献
19.
Variability in microbial carbon isotope fractionation of tetra- and trichloroethene upon reductive dechlorination 总被引:2,自引:0,他引:2
The variability of stable carbon isotope fractionation upon reductive dechlorination of tetra- and trichloroethene by several microbial strains was investigated to examine the uncertainties related to the in situ application of compound specific isotope analysis (CSIA) of chlorinated ethenes. Carbon isotope fractionation was investigated with a set of microorganisms representative for the currently known diversity of dehalorespirers: Dehalococcoides ethenogenes strain 195, Desulfitobacterium sp. strain Viet1, Desulfuromonas michiganensis and Geobacter lovleyi sp. strain SZ and compared to the previous reports using Sulfurospirillum spp. and Desulfitobacterium sp. strain PCE-S. Carbon isotope fractionation of tetrachloroethene (PCE) and trichlorethene (TCE) was highly variable ranging from the absence of significant fractionation to carbon isotope fractionation (epsilonC) of 16.7 and 3.5-18.9 for PCE and TCE, respectively. Fractionation of both compounds by D. ethenogenes strain 195 (PCE: epsilonC=6.0; TCE: epsilonC=13.7) was similar to the literature data for mixed cultures containing Dehalococcoides spp. D. michiganensis (PCE: no significant fractionation; TCE: epsilonC=3.5) and G. lovleyi sp. strain SZ (PCE no significant fractionation; TCE: epsilonC=8.5) generated the lowest fractionation of all studied strains. Desulfitobacterium sp. strain Viet1 (PCE: epsilonC=16.7) gave the highest enrichment factor for PCE. 相似文献